--- license: apache-2.0 --- Out repository [flan-alpaca-lora](https://github.com/Reason-Wang/flan-alpaca-lora) contains the details to train flan-t5 with [Alpaca](https://github.com/tatsu-lab/stanford_alpaca) instructions and [low-rank adaptation](https://arxiv.org/abs/2106.09685). You can use the following code easily. Usage: ```python import transformers from peft import PeftModel base_model = transformers.AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-large") peft_model = PeftModel.from_pretrained(base_model,"reasonwang/flan-alpaca-lora-large") inputs = tokenizer("List a few tips to get good scores in math.", return_tensors="pt") outputs = peft_model.generate(**inputs, max_length=128, do_sample=True) print(tokenizer.batch_decode(outputs, skip_special_tokens=True)) ```