---
base_model: klue/roberta-base
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:7654
- loss:CosineSimilarityLoss
widget:
- source_sentence: 밥을 먹고 나서 운동하시겠어요, 먹기 전에 하시겠어요?
sentences:
- 제습기 조정하는 방법을 알려줘
- 금요일에 놀러 가고 싶은지 토요일에 가고 싶은지 말해보겠니?
- 이번에 임원들도 오시니 거래처 사람들과 만날 때 늦지 마세요.
- source_sentence: 올해 지원 대상에 선정된 42개사는 사업화 자금부터 사업화 촉진 진단, 민간투자 유치 등 기업 규모를 키울 수 있는
각종 지원을 최대 15개월까지 받을 수 있다.
sentences:
- 체크인 아웃 할 때 소통이나 협조도도 매우 좋습니다
- 작년 용평 지역 강설량은?
- 긴급 사태가 선언된 7개 도부현의 지사는 법적인 근거 아래 외출자제와 휴교 등을 요청할 수 있다.
- source_sentence: 언제 할머니 칠순 잔치가 잡혀 있나요, 이번달입니까 다음달입니까?
sentences:
- 그리고 세탁세제와 식용유가 없으니 준비 하세요
- 삼월에 태어난 친구 이름이 어떻게 됩니까?
- 비 올 때는 다른 신발 말고 장화를 신었으면 합니다.
- source_sentence: 한메일 서비스를 사용할 수 있는 기한이 언제일까요?
sentences:
- 우리는 코로나19와의 투쟁에서 개발도상국들을 지원해야 할 필요성을 인정한다.
- 비 올 때는 높은지대에 텐트 치도록 해. 낮은 지대는 별로야.
- 한메일은 언제 서비스를 종료해?
- source_sentence: 오늘 제가 해야할 일이 무엇인가요!
sentences:
- 시내 중심에 위치한 깔끔하고 머무르기 좋은 숙소 입니다.
- 가게로 들어가는 문 바로 옆에 오른쪽으로 올라가는 입구가 있어요.
- 언제쯤 친구가 여행 갈 수 있겠니?
model-index:
- name: SentenceTransformer based on klue/roberta-base
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: Unknown
type: unknown
metrics:
- type: pearson_cosine
value: 0.3477070578392738
name: Pearson Cosine
- type: spearman_cosine
value: 0.35560473197486514
name: Spearman Cosine
- type: pearson_manhattan
value: 0.36738467673522557
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.36460670798564826
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.36074511612166327
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.35482778401649034
name: Spearman Euclidean
- type: pearson_dot
value: 0.21251170218646828
name: Pearson Dot
- type: spearman_dot
value: 0.20063256899469895
name: Spearman Dot
- type: pearson_max
value: 0.36738467673522557
name: Pearson Max
- type: spearman_max
value: 0.36460670798564826
name: Spearman Max
- type: pearson_cosine
value: 0.9611295434382598
name: Pearson Cosine
- type: spearman_cosine
value: 0.922281644313147
name: Spearman Cosine
- type: pearson_manhattan
value: 0.95182850390749
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.9211213430736883
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.9519510086799272
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.9217056450919558
name: Spearman Euclidean
- type: pearson_dot
value: 0.9503136478175895
name: Pearson Dot
- type: spearman_dot
value: 0.9045157489205089
name: Spearman Dot
- type: pearson_max
value: 0.9611295434382598
name: Pearson Max
- type: spearman_max
value: 0.922281644313147
name: Spearman Max
---
# SentenceTransformer based on klue/roberta-base
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [klue/roberta-base](https://huggingface.co/klue/roberta-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [klue/roberta-base](https://huggingface.co/klue/roberta-base)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'오늘 제가 해야할 일이 무엇인가요!',
'언제쯤 친구가 여행 갈 수 있겠니?',
'시내 중심에 위치한 깔끔하고 머무르기 좋은 숙소 입니다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:-------------------|:-----------|
| pearson_cosine | 0.3477 |
| spearman_cosine | 0.3556 |
| pearson_manhattan | 0.3674 |
| spearman_manhattan | 0.3646 |
| pearson_euclidean | 0.3607 |
| spearman_euclidean | 0.3548 |
| pearson_dot | 0.2125 |
| spearman_dot | 0.2006 |
| pearson_max | 0.3674 |
| **spearman_max** | **0.3646** |
#### Semantic Similarity
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:-------------------|:-----------|
| pearson_cosine | 0.9611 |
| spearman_cosine | 0.9223 |
| pearson_manhattan | 0.9518 |
| spearman_manhattan | 0.9211 |
| pearson_euclidean | 0.952 |
| spearman_euclidean | 0.9217 |
| pearson_dot | 0.9503 |
| spearman_dot | 0.9045 |
| pearson_max | 0.9611 |
| **spearman_max** | **0.9223** |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 7,654 training samples
* Columns: sentence_0
, sentence_1
, and label
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 | label |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details |
‘인공지능 반도체 산업 발전전략’의 차질 없는 이행 및 성과점검을 위해 정부와 산·학·연이 참여하는 ‘인공지능 반도체 산업 전략회의’를 구성·운영한다.
| 정부, 산업계, 학계, 연구기관이 참여하는 '인공지능 반도체산업전략회의'를 구성하여 '인공지능 반도체산업 발전전략'의 성과를 점검할 예정입니다.
| 0.6
|
| 예상했던대로 가성비 대비 최고의 위치였어요.
| 처음에 예상했던것보다 위치가 훨씬 좋았어요
| 0.54
|
| 올해 처음 개최되는 투자유치설명회는 전문투자기관에 홍보할 기회를 얻기 힘든 1인 미디어 스타트업들의 민간 투자유치를 지원할 목적으로 마련됐다.
| 이번 발사는 저궤도위성에 이어 정지궤도위성에서 실시간으로 환경 감시 업무를 수행하는 세계 최초의 위성으로 기록됐다.
| 0.04
|
* Loss: [CosineSimilarityLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 4
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters