--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain" datasets: - reachosen/autotrain-data-in-basket3.4 co2_eq_emissions: emissions: 0.014265307830323891 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 83090142182 - CO2 Emissions (in grams): 0.0143 ## Validation Metrics - Loss: 0.524 - Accuracy: 0.833 - Macro F1: 0.840 - Micro F1: 0.833 - Weighted F1: 0.829 - Macro Precision: 0.847 - Micro Precision: 0.833 - Weighted Precision: 0.836 - Macro Recall: 0.843 - Micro Recall: 0.833 - Weighted Recall: 0.833 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/reachosen/autotrain-in-basket3.4-83090142182 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("reachosen/autotrain-in-basket3.4-83090142182", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("reachosen/autotrain-in-basket3.4-83090142182", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```