File size: 5,412 Bytes
1e2ff05
 
b609628
 
 
 
 
 
 
 
1e2ff05
b609628
 
 
6b1316d
 
b609628
 
 
 
 
 
 
 
 
 
 
 
98ae8db
 
b609628
 
 
 
 
 
98ae8db
 
 
 
 
 
b609628
 
 
 
 
 
 
 
 
98ae8db
b609628
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
---
license: apache-2.0
pipeline_tag: text-generation
tags:
- finetuned
inference: true
widget:
- messages:
  - role: user
    content: What is your favorite condiment?
---

# Mistral-7B-Instruct-v0.1 for Flax

This is a Flax port of the Mistral-7B-Instruct-v0.1 model. The model is NOT finetuned or altered in any way. It is a direct port of the PyTorch model to Flax using the existing `transformers` model class.

## Quickstart

```python
import jax.numpy as jnp
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import FlaxMistralForCausalLM

model = FlaxMistralForCausalLM.from_pretrained("rdyro/Mistral-7B-Instruct-v0.1", dtype=jnp.float32)

tokenizer = AutoTokenizer.from_pretrained("rdyro/Mistral-7B-Instruct-v0.1")

messages = [{"role": "user", "content": "what's your name?"}]
input_jax = tokenizer.apply_chat_template(messages, return_tensors="jax")
out_jax = model(input_jax)
```

We can compare the outputs to the original PyTorch version.

```python
torch_model_id = "mistralai/Mistral-7B-Instruct-v0.1"
torch_model = AutoModelForCausalLM.from_pretrained(
    torch_model_id, device_map="cpu", torch_dtype=torch.float32
)
torch_tokenizer = AutoTokenizer.from_pretrained(torch_model_id)

input_pt = torch_tokenizer.apply_chat_template(messages, return_tensors="pt")

with torch.no_grad():
    out_pt = torch_model(input_pt)

err = jnp.linalg.norm(jnp.array(out_pt.logits) - out_jax.logits) / jnp.linalg.norm(
    jnp.array(out_pt.logits)
)
print(f"Error is numerical precision level: {err:.4e}")
# prints: Error is numerical precision level: 1.0205e-06
```

<p align="center">
Below is the PyTorch version Model Card.
</p>

---

# Model Card for Mistral-7B-Instruct-v0.1

The Mistral-7B-Instruct-v0.1 Large Language Model (LLM) is a instruct fine-tuned version of the [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) generative text model using a variety of publicly available conversation datasets.

For full details of this model please read our [paper](https://arxiv.org/abs/2310.06825) and [release blog post](https://mistral.ai/news/announcing-mistral-7b/).

## Instruction format

In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[/INST]` tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id.

E.g.
```
text = "<s>[INST] What is your favourite condiment? [/INST]"
"Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!</s> "
"[INST] Do you have mayonnaise recipes? [/INST]"
```

This format is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating) via the `apply_chat_template()` method:

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

device = "cuda" # the device to load the model onto

model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")

messages = [
    {"role": "user", "content": "What is your favourite condiment?"},
    {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
    {"role": "user", "content": "Do you have mayonnaise recipes?"}
]

encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")

model_inputs = encodeds.to(device)
model.to(device)

generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
```

## Model Architecture
This instruction model is based on Mistral-7B-v0.1, a transformer model with the following architecture choices:
- Grouped-Query Attention
- Sliding-Window Attention
- Byte-fallback BPE tokenizer

## Troubleshooting
- If you see the following error:
```
Traceback (most recent call last):
File "", line 1, in
File "/transformers/models/auto/auto_factory.py", line 482, in from_pretrained
config, kwargs = AutoConfig.from_pretrained(
File "/transformers/models/auto/configuration_auto.py", line 1022, in from_pretrained
config_class = CONFIG_MAPPING[config_dict["model_type"]]
File "/transformers/models/auto/configuration_auto.py", line 723, in getitem
raise KeyError(key)
KeyError: 'mistral'
```

Installing transformers from source should solve the issue
pip install git+https://github.com/huggingface/transformers

This should not be required after transformers-v4.33.4.

## Limitations

The Mistral 7B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance. 
It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to
make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.

## The Mistral AI Team

Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, William El Sayed.