---
base_model: BAAI/bge-base-en-v1.5
datasets: []
language:
- en
library_name: sentence-transformers
license: apache-2.0
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:6300
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: As of December 31, 2023, deferred revenues for unsatisfied performance
obligations consisted of $769 million related to Hilton Honors that will be recognized
as revenue over approximately the next two years.
sentences:
- How many shares of common stock were issued in both 2022 and 2023?
- What is the projected timeline for recognizing revenue from deferred revenues
related to Hilton Honors as of December 31, 2023?
- What acquisitions did CVS Health Corporation complete in 2023 to enhance their
care delivery strategy?
- source_sentence: If a good or service does not qualify as distinct, it is combined
with the other non-distinct goods or services within the arrangement and these
combined goods or services are treated as a single performance obligation for
accounting purposes. The arrangement's transaction price is then allocated to
each performance obligation based on the relative standalone selling price of
each performance obligation.
sentences:
- What does the summary table indicate about the company's activities at the end
of 2023?
- What governs the treatment of goods or services that are not distinct within a
contractual arrangement?
- What is the basis for the Company to determine the Standalone Selling Price (SSP)
for each distinct performance obligation in contracts with multiple performance
obligations?
- source_sentence: As of January 2023, the maximum daily borrowing capacity under
the commercial paper program was approximately $2.75 billion.
sentences:
- What is the maximum daily borrowing capacity under the commercial paper program
as of January 2023?
- When does the Company's fiscal year end?
- How much cash did acquisition activities use in 2023?
- source_sentence: Federal Home Loan Bank borrowings had an interest rate of 4.59%
in 2022, which increased to 5.14% in 2023.
sentences:
- By what percentage did the company's capital expenditures increase in fiscal 2023
compared to fiscal 2022?
- What is the significance of Note 13 in the context of legal proceedings described
in the Annual Report on Form 10-K?
- How much did the Federal Home Loan Bank borrowings increase in terms of interest
rates from 2022 to 2023?
- source_sentence: The design of the Annual Report, with the consolidated financial
statements placed immediately after Part IV, enhances the integration of financial
data by maintaining a coherent structure.
sentences:
- How does the structure of the Annual Report on Form 10-K facilitate the integration
of the consolidated financial statements?
- Where can one find the Glossary of Terms and Acronyms in Item 8?
- What part of the annual report contains the consolidated financial statements
and accompanying notes?
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.6957142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8171428571428572
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8628571428571429
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6957142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2723809523809524
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17257142857142854
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08999999999999998
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6957142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8171428571428572
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8628571428571429
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7971144469297426
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7641831065759639
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7681728985040082
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.6942857142857143
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.81
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8514285714285714
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6942857142857143
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17028571428571426
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6942857142857143
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.81
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8514285714285714
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7951260604161544
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7617998866213151
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7658003405075238
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.7014285714285714
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7971428571428572
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.85
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8885714285714286
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7014285714285714
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.26571428571428574
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16999999999999998
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08885714285714284
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7014285714285714
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7971428571428572
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.85
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8885714285714286
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.793266992460996
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7629580498866213
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7678096436855835
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6957142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8014285714285714
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8357142857142857
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8842857142857142
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6957142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2671428571428571
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16714285714285712
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08842857142857141
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6957142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8014285714285714
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8357142857142857
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8842857142857142
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.787378246207931
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7566984126984126
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7613545312565108
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6571428571428571
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7871428571428571
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8285714285714286
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8757142857142857
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6571428571428571
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2623809523809524
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1657142857142857
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08757142857142856
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6571428571428571
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7871428571428571
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8285714285714286
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8757142857142857
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7655516319615892
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7303951247165531
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7349875161463472
name: Cosine Map@100
---
# BGE base Financial Matryoshka
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("rbhatia46/bge-base-financial-nvidia-matryoshka")
# Run inference
sentences = [
'The design of the Annual Report, with the consolidated financial statements placed immediately after Part IV, enhances the integration of financial data by maintaining a coherent structure.',
'How does the structure of the Annual Report on Form 10-K facilitate the integration of the consolidated financial statements?',
'Where can one find the Glossary of Terms and Acronyms in Item 8?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6957 |
| cosine_accuracy@3 | 0.8171 |
| cosine_accuracy@5 | 0.8629 |
| cosine_accuracy@10 | 0.9 |
| cosine_precision@1 | 0.6957 |
| cosine_precision@3 | 0.2724 |
| cosine_precision@5 | 0.1726 |
| cosine_precision@10 | 0.09 |
| cosine_recall@1 | 0.6957 |
| cosine_recall@3 | 0.8171 |
| cosine_recall@5 | 0.8629 |
| cosine_recall@10 | 0.9 |
| cosine_ndcg@10 | 0.7971 |
| cosine_mrr@10 | 0.7642 |
| **cosine_map@100** | **0.7682** |
#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6943 |
| cosine_accuracy@3 | 0.81 |
| cosine_accuracy@5 | 0.8514 |
| cosine_accuracy@10 | 0.9 |
| cosine_precision@1 | 0.6943 |
| cosine_precision@3 | 0.27 |
| cosine_precision@5 | 0.1703 |
| cosine_precision@10 | 0.09 |
| cosine_recall@1 | 0.6943 |
| cosine_recall@3 | 0.81 |
| cosine_recall@5 | 0.8514 |
| cosine_recall@10 | 0.9 |
| cosine_ndcg@10 | 0.7951 |
| cosine_mrr@10 | 0.7618 |
| **cosine_map@100** | **0.7658** |
#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.7014 |
| cosine_accuracy@3 | 0.7971 |
| cosine_accuracy@5 | 0.85 |
| cosine_accuracy@10 | 0.8886 |
| cosine_precision@1 | 0.7014 |
| cosine_precision@3 | 0.2657 |
| cosine_precision@5 | 0.17 |
| cosine_precision@10 | 0.0889 |
| cosine_recall@1 | 0.7014 |
| cosine_recall@3 | 0.7971 |
| cosine_recall@5 | 0.85 |
| cosine_recall@10 | 0.8886 |
| cosine_ndcg@10 | 0.7933 |
| cosine_mrr@10 | 0.763 |
| **cosine_map@100** | **0.7678** |
#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.6957 |
| cosine_accuracy@3 | 0.8014 |
| cosine_accuracy@5 | 0.8357 |
| cosine_accuracy@10 | 0.8843 |
| cosine_precision@1 | 0.6957 |
| cosine_precision@3 | 0.2671 |
| cosine_precision@5 | 0.1671 |
| cosine_precision@10 | 0.0884 |
| cosine_recall@1 | 0.6957 |
| cosine_recall@3 | 0.8014 |
| cosine_recall@5 | 0.8357 |
| cosine_recall@10 | 0.8843 |
| cosine_ndcg@10 | 0.7874 |
| cosine_mrr@10 | 0.7567 |
| **cosine_map@100** | **0.7614** |
#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [InformationRetrievalEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:----------|
| cosine_accuracy@1 | 0.6571 |
| cosine_accuracy@3 | 0.7871 |
| cosine_accuracy@5 | 0.8286 |
| cosine_accuracy@10 | 0.8757 |
| cosine_precision@1 | 0.6571 |
| cosine_precision@3 | 0.2624 |
| cosine_precision@5 | 0.1657 |
| cosine_precision@10 | 0.0876 |
| cosine_recall@1 | 0.6571 |
| cosine_recall@3 | 0.7871 |
| cosine_recall@5 | 0.8286 |
| cosine_recall@10 | 0.8757 |
| cosine_ndcg@10 | 0.7656 |
| cosine_mrr@10 | 0.7304 |
| **cosine_map@100** | **0.735** |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 6,300 training samples
* Columns: positive
and anchor
* Approximate statistics based on the first 1000 samples:
| | positive | anchor |
|:--------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string |
| details |
Acquisition activity used cash of $765 million in 2023, primarily related to a Beauty acquisition.
| How much cash did acquisition activities use in 2023?
|
| In a financial report, Part IV Item 15 includes Exhibits and Financial Statement Schedules as mentioned.
| What content can be expected under Part IV Item 15 in a financial report?
|
| we had more than 8.3 million fiber consumer wireline broadband customers, adding 1.1 million during the year.
| How many fiber consumer wireline broadband customers did the company have at the end of the year?
|
* Loss: [MatryoshkaLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters