--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - conll2002 metrics: - precision - recall - f1 - accuracy model-index: - name: distilbert-base-uncased-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: conll2002 type: conll2002 config: es split: validation args: es metrics: - name: Precision type: precision value: 0.7348668280871671 - name: Recall type: recall value: 0.7311491206938088 - name: F1 type: f1 value: 0.733003260475788 - name: Accuracy type: accuracy value: 0.94996285742796 --- # distilbert-base-uncased-finetuned-ner This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the conll2002 dataset. It achieves the following results on the evaluation set: - Loss: 0.2347 - Precision: 0.7349 - Recall: 0.7311 - F1: 0.7330 - Accuracy: 0.9500 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.3477 | 1.0 | 521 | 0.2581 | 0.6392 | 0.5888 | 0.6130 | 0.9270 | | 0.1883 | 2.0 | 1042 | 0.2224 | 0.6617 | 0.6644 | 0.6631 | 0.9370 | | 0.1339 | 3.0 | 1563 | 0.2079 | 0.7044 | 0.7021 | 0.7033 | 0.9431 | | 0.1039 | 4.0 | 2084 | 0.2040 | 0.7017 | 0.7221 | 0.7118 | 0.9446 | | 0.0835 | 5.0 | 2605 | 0.2126 | 0.7306 | 0.7166 | 0.7235 | 0.9486 | | 0.0647 | 6.0 | 3126 | 0.2221 | 0.7220 | 0.7198 | 0.7209 | 0.9478 | | 0.0536 | 7.0 | 3647 | 0.2258 | 0.7198 | 0.7244 | 0.7221 | 0.9480 | | 0.0443 | 8.0 | 4168 | 0.2319 | 0.7047 | 0.7334 | 0.7188 | 0.9469 | | 0.0375 | 9.0 | 4689 | 0.2350 | 0.7182 | 0.7315 | 0.7248 | 0.9482 | | 0.0349 | 10.0 | 5210 | 0.2347 | 0.7349 | 0.7311 | 0.7330 | 0.9500 | ### Framework versions - Transformers 4.43.3 - Pytorch 2.4.0 - Datasets 2.20.0 - Tokenizers 0.19.1