--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer datasets: - conll2002 metrics: - precision - recall - f1 - accuracy model-index: - name: NER-finetuning-BETO-PRO results: - task: name: Token Classification type: token-classification dataset: name: conll2002 type: conll2002 config: es split: validation args: es metrics: - name: Precision type: precision value: 0.7017726798748697 - name: Recall type: recall value: 0.7732077205882353 - name: F1 type: f1 value: 0.7357603585875151 - name: Accuracy type: accuracy value: 0.9536327652922068 --- # NER-finetuning-BETO-PRO This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the conll2002 dataset. It achieves the following results on the evaluation set: - Loss: 0.1981 - Precision: 0.7018 - Recall: 0.7732 - F1: 0.7358 - Accuracy: 0.9536 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1941 | 1.0 | 1041 | 0.1965 | 0.6201 | 0.6836 | 0.6503 | 0.9422 | | 0.1276 | 2.0 | 2082 | 0.1843 | 0.6666 | 0.7387 | 0.7008 | 0.9487 | | 0.0885 | 3.0 | 3123 | 0.1760 | 0.7056 | 0.7601 | 0.7319 | 0.9538 | | 0.0623 | 4.0 | 4164 | 0.1856 | 0.6982 | 0.7670 | 0.7310 | 0.9532 | | 0.0485 | 5.0 | 5205 | 0.1981 | 0.7018 | 0.7732 | 0.7358 | 0.9536 | ### Framework versions - Transformers 4.50.3 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1