--- library_name: diffusers pipeline_tag: text-to-image --- ## Model Details ### Model Description This model is fine-tuned from [stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) on 110,000 image-text pairs from the MIMIC dataset using the Norm-tuning PEFT method. Under this fine-tuning strategy, fine-tune only the normalization weightsin the U-Net while keeping everything else frozen. - **Developed by:** [Raman Dutt](https://twitter.com/RamanDutt4) - **Shared by:** [Raman Dutt](https://twitter.com/RamanDutt4) - **Model type:** [Stable Diffusion fine-tuned using Parameter-Efficient Fine-Tuning] - **Finetuned from model:** [stable-diffusion-v1-5](https://huggingface.co/runwayml/stable-diffusion-v1-5) ### Model Sources - **Paper:** [Parameter-Efficient Fine-Tuning for Medical Image Analysis: The Missed Opportunity](https://arxiv.org/abs/2305.08252) - **Demo:** [MIMIC-SD-PEFT-Demo](https://huggingface.co/spaces/raman07/MIMIC-SD-Demo-Memory-Optimized?logs=container) ## Direct Use This model can be directly used to generate realistic medical images from text prompts. ## How to Get Started with the Model ```python import os from safetensors.torch import load_file from diffusers.pipelines import StableDiffusionPipeline pipe = StableDiffusionPipeline.from_pretrained(sd_folder_path, revision="fp16") exp_path = os.path.join('unet', 'diffusion_pytorch_model.safetensors') state_dict = load_file(exp_path) # Load the adapted U-Net pipe.unet.load_state_dict(state_dict, strict=False) pipe.to('cuda:0') # Generate images with text prompts TEXT_PROMPT = "No acute cardiopulmonary abnormality." GUIDANCE_SCALE = 4 INFERENCE_STEPS = 75 result_image = pipe( prompt=TEXT_PROMPT, height=224, width=224, guidance_scale=GUIDANCE_SCALE, num_inference_steps=INFERENCE_STEPS, ) result_pil_image = result_image["images"][0] ``` ## Training Details ### Training Data This model has been fine-tuned on 110K image-text pairs from the MIMIC dataset. ### Training Procedure The training procedure has been described in detail in Section 4.3 of this [paper](https://arxiv.org/abs/2305.08252). #### Metrics This model has been evaluated using the Fréchet inception distance (FID) Score on MIMIC dataset. ### Results | Fine-Tuning Strategy | FID Score | |------------------------|-----------| | Full FT | 58.74 | | Attention | 52.41 | | Bias | 20.81 | | Norm | 29.84 | | Bias+Norm+Attention | 35.93 | | LoRA | 439.65 | | SV-Diff | 23.59 | | DiffFit | 42.50 | ## Environmental Impact Using Parameter-Efficient Fine-Tuning potentially causes **lesser** harm to the environment since we fine-tune a significantly lesser number of parameters in a model. This results in much lesser computing and hardware requirements. ## Citation **BibTeX:** @article{dutt2023parameter, title={Parameter-Efficient Fine-Tuning for Medical Image Analysis: The Missed Opportunity}, author={Dutt, Raman and Ericsson, Linus and Sanchez, Pedro and Tsaftaris, Sotirios A and Hospedales, Timothy}, journal={arXiv preprint arXiv:2305.08252}, year={2023} } **APA:** Dutt, R., Ericsson, L., Sanchez, P., Tsaftaris, S. A., & Hospedales, T. (2023). Parameter-Efficient Fine-Tuning for Medical Image Analysis: The Missed Opportunity. arXiv preprint arXiv:2305.08252. ## Model Card Authors Raman Dutt [Twitter](https://twitter.com/RamanDutt4) [LinkedIn](https://www.linkedin.com/in/raman-dutt/) [Email](mailto:s2198939@ed.ac.uk)