--- language: - en tags: - text-to-sql - gpt2 - gpt2-medium - nlp-to-sql - text2sql - sql datasets: - b-mc2/sql-create-context --- # Model Card This is my first fine tuned LLM project. ## Prompt query = List the creation year, name and budget of each department f"Translate the following English question to SQL: {query} ## Output SELECT creation_year, name, budget FROM department #### Training Hyperparameters num_train_epochs=1 per_device_train_batch_size=3 gradient_accumulation_steps=9 learning_rate=5e-5 weight_decay=0.01 ## Evaluation | Step | Training Loss | | -------- | ------- | | 500 | 0.337800 | | 1000 | 0.262900 | | 1500 | 0.253200 | | 2000 | 0.246400 | {'eval_loss': 0.23689331114292145, 'eval_runtime': 104.4102, 'eval_samples_per_second': 67.043, 'eval_steps_per_second': 8.38, 'epoch': 1.0}