--- license: apache-2.0 tags: - image-classification - generated_from_trainer datasets: - imagefolder - rajistics/indian_food_images metrics: - accuracy widget: - src: https://huggingface.co/rajistics/finetuned-indian-food/resolve/main/003.jpg example_title: Fried Rice - src: https://huggingface.co/rajistics/finetuned-indian-food/resolve/main/126.jpg example_title: Paani Puri - src: https://huggingface.co/rajistics/finetuned-indian-food/resolve/main/401.jpg example_title: Chapathi model-index: - name: finetuned-indian-food results: - task: name: Image Classification type: image-classification dataset: name: indian_food_images type: imagefolder args: default metrics: - name: Accuracy type: accuracy value: 0.9521785334750266 - task: type: image-classification name: Image Classification dataset: name: rajistics/indian_food_images type: rajistics/indian_food_images config: rajistics--indian_food_images split: test metrics: - name: Accuracy type: accuracy value: 0.8257173219978746 verified: true - name: Precision Macro type: precision value: 0.8391547623590003 verified: true - name: Precision Micro type: precision value: 0.8257173219978746 verified: true - name: Precision Weighted type: precision value: 0.8437849242516663 verified: true - name: Recall Macro type: recall value: 0.8199909093335551 verified: true - name: Recall Micro type: recall value: 0.8257173219978746 verified: true - name: Recall Weighted type: recall value: 0.8257173219978746 verified: true - name: F1 Macro type: f1 value: 0.8207881196755944 verified: true - name: F1 Micro type: f1 value: 0.8257173219978746 verified: true - name: F1 Weighted type: f1 value: 0.8256340007731109 verified: true - name: loss type: loss value: 0.6241679787635803 verified: true --- # finetuned-indian-food This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the indian_food_images dataset. It achieves the following results on the evaluation set: - Loss: 0.2139 - Accuracy: 0.9522 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0846 | 0.3 | 100 | 0.9561 | 0.8555 | | 0.7894 | 0.6 | 200 | 0.5871 | 0.8927 | | 0.6233 | 0.9 | 300 | 0.4447 | 0.9107 | | 0.3619 | 1.2 | 400 | 0.4355 | 0.8937 | | 0.34 | 1.5 | 500 | 0.3712 | 0.9118 | | 0.3413 | 1.8 | 600 | 0.4088 | 0.8916 | | 0.3619 | 2.1 | 700 | 0.3741 | 0.9044 | | 0.2135 | 2.4 | 800 | 0.3286 | 0.9160 | | 0.2166 | 2.7 | 900 | 0.2758 | 0.9416 | | 0.1557 | 3.0 | 1000 | 0.2679 | 0.9330 | | 0.1115 | 3.3 | 1100 | 0.2529 | 0.9362 | | 0.1571 | 3.6 | 1200 | 0.2360 | 0.9469 | | 0.1079 | 3.9 | 1300 | 0.2139 | 0.9522 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0+cu113 - Datasets 2.3.2 - Tokenizers 0.12.1