--- language: - bn license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: Whisper Base Bn - Raiyan Ahmed results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: bn split: None args: 'config: bn, split: test' metrics: - name: Wer type: wer value: 33.449797070760546 --- # Whisper Base Bn - Raiyan Ahmed This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1074 - Wer: 33.4498 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 26 - eval_batch_size: 46 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:-------:| | 0.2369 | 0.6365 | 1000 | 0.2433 | 62.1881 | | 0.1242 | 1.2731 | 2000 | 0.1734 | 49.4369 | | 0.1022 | 1.9096 | 3000 | 0.1197 | 39.0531 | | 0.046 | 2.5461 | 4000 | 0.1067 | 34.5497 | | 0.0702 | 2.6247 | 5000 | 0.1210 | 38.4777 | | 0.1028 | 1.5748 | 6000 | 0.1484 | 44.2750 | | 0.0772 | 1.8373 | 7000 | 0.1323 | 40.2388 | | 0.0648 | 2.0997 | 8000 | 0.1205 | 39.1165 | | 0.0367 | 2.3622 | 9000 | 0.1154 | 35.6332 | | 0.0249 | 2.6247 | 10000 | 0.1074 | 33.4498 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1