--- library_name: transformers license: apache-2.0 base_model: timm/resnet18.a1_in1k tags: - image-classification - vision - generated_from_trainer metrics: - accuracy model-index: - name: vit-base-beans results: [] --- # vit-base-beans This model is a fine-tuned version of [timm/resnet18.a1_in1k](https://huggingface.co/timm/resnet18.a1_in1k) on the beans dataset. It achieves the following results on the evaluation set: - Loss: 1.0332 - Accuracy: 0.6767 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 1337 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0881 | 1.0 | 130 | 1.0902 | 0.4135 | | 1.0716 | 2.0 | 260 | 1.0685 | 0.5038 | | 1.061 | 3.0 | 390 | 1.0459 | 0.6241 | | 1.0514 | 4.0 | 520 | 1.0407 | 0.6015 | | 1.05 | 5.0 | 650 | 1.0332 | 0.6767 | ### Framework versions - Transformers 4.46.0.dev0 - Pytorch 2.4.1+cu118 - Datasets 2.21.0 - Tokenizers 0.20.0