--- pipeline_tag: image-segmentation --- # Instance Segmentation Example Content: - [PyTorch Version with Accelerate](#pytorch-version-with-accelerate) - [Reload and Perform Inference](#reload-and-perform-inference) ## PyTorch Version with Accelerate This model is based on the script [`run_instance_segmentation_no_trainer.py`](https://github.com/huggingface/transformers/blob/main/examples/pytorch/instance-segmentation/run_instance_segmentation_no_trainer.py). The script uses [🤗 Accelerate](https://github.com/huggingface/accelerate) to write your own training loop in PyTorch and run it on various environments, including CPU, multi-CPU, GPU, multi-GPU, and TPU, with support for mixed precision. First, configure the environment: ```bash accelerate config ``` Answer the questions regarding your training environment. Then, run: ```bash accelerate test ``` This command ensures everything is ready for training. Finally, launch training with: ```bash accelerate launch run_instance_segmentation_no_trainer.py \ --model_name_or_path facebook/mask2former-swin-tiny-coco-instance \ --output_dir finetune-instance-segmentation-ade20k-mini-mask2former-no-trainer \ --dataset_name qubvel-hf/ade20k-mini \ --do_reduce_labels \ --image_height 256 \ --image_width 256 \ --num_train_epochs 40 \ --learning_rate 1e-5 \ --lr_scheduler_type constant \ --per_device_train_batch_size 8 \ --gradient_accumulation_steps 2 \ --dataloader_num_workers 8 \ --push_to_hub ``` ## Reload and Perform Inference You can easily load this trained model and perform inference as follows: ```python import torch import requests import matplotlib.pyplot as plt from PIL import Image from transformers import Mask2FormerForUniversalSegmentation, Mask2FormerImageProcessor # Load image image = Image.open(requests.get("http://farm4.staticflickr.com/3017/3071497290_31f0393363_z.jpg", stream=True).raw) # Load model and image processor device = "cuda" checkpoint = "qubvel-hf/finetune-instance-segmentation-ade20k-mini-mask2former-no-trainer" model = Mask2FormerForUniversalSegmentation.from_pretrained(checkpoint, device_map=device) image_processor = Mask2FormerImageProcessor.from_pretrained(checkpoint) # Run inference on image inputs = image_processor(images=[image], return_tensors="pt").to(device) with torch.no_grad(): outputs = model(**inputs) # Post-process outputs outputs = image_processor.post_process_instance_segmentation(outputs, target_sizes=[image.size[::-1]]) print("Mask shape: ", outputs[0]["segmentation"].shape) print("Mask values: ", outputs[0]["segmentation"].unique()) for segment in outputs[0]["segments_info"]: print("Segment: ", segment) ``` ``` Mask shape: torch.Size([427, 640]) Mask values: tensor([-1., 0., 1., 2., 3., 4., 5., 6.]) Segment: {'id': 0, 'label_id': 0, 'was_fused': False, 'score': 0.946127} Segment: {'id': 1, 'label_id': 1, 'was_fused': False, 'score': 0.961582} Segment: {'id': 2, 'label_id': 1, 'was_fused': False, 'score': 0.968367} Segment: {'id': 3, 'label_id': 1, 'was_fused': False, 'score': 0.819527} Segment: {'id': 4, 'label_id': 1, 'was_fused': False, 'score': 0.655761} Segment: {'id': 5, 'label_id': 1, 'was_fused': False, 'score': 0.531299} Segment: {'id': 6, 'label_id': 1, 'was_fused': False, 'score': 0.929477} ``` Use the following code to visualize the results: ```python import numpy as np import matplotlib.pyplot as plt segmentation = outputs[0]["segmentation"].numpy() plt.figure(figsize=(10, 10)) plt.subplot(1, 2, 1) plt.imshow(np.array(image)) plt.axis("off") plt.subplot(1, 2, 2) plt.imshow(segmentation) plt.axis("off") plt.show() ``` ![Result](https://i.imgur.com/rZmaRjD.png)