---
base_model: indobenchmark/indobert-large-p2
datasets: []
language: []
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:5749
- loss:CosineSimilarityLoss
widget:
- source_sentence: Dua ekor anjing berenang di kolam renang.
sentences:
- Anjing-anjing sedang berenang di kolam renang.
- Seekor binatang sedang berjalan di atas tanah.
- Seorang pria sedang menyeka pinggiran mangkuk.
- source_sentence: Seorang anak perempuan sedang mengiris mentega menjadi dua bagian.
sentences:
- Seorang wanita sedang mengiris tahu.
- Dua orang berkelahi.
- Seorang pria sedang menari.
- source_sentence: Seorang gadis sedang makan kue mangkuk.
sentences:
- Seorang pria sedang mengiris bawang putih dengan alat pengiris mandolin.
- Seorang pria sedang memotong dan memotong bawang.
- Seorang wanita sedang makan kue mangkuk.
- source_sentence: Sebuah helikopter mendarat di landasan helikopter.
sentences:
- Seorang pria sedang mengiris mentimun.
- Seorang pria sedang memotong batang pohon dengan kapak.
- Sebuah helikopter mendarat.
- source_sentence: Seorang pria sedang berjalan dengan seekor kuda.
sentences:
- Seorang pria sedang menuntun seekor kuda dengan tali kekang.
- Seorang pria sedang menembakkan pistol.
- Seorang wanita sedang memetik tomat.
model-index:
- name: SentenceTransformer based on indobenchmark/indobert-large-p2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: Unknown
type: unknown
metrics:
- type: pearson_cosine
value: 0.8691840566814281
name: Pearson Cosine
- type: spearman_cosine
value: 0.8676618157111291
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8591936899214765
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8625729388794413
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8599101625523397
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8632992102966184
name: Spearman Euclidean
- type: pearson_dot
value: 0.8440663965451926
name: Pearson Dot
- type: spearman_dot
value: 0.8392116432595296
name: Spearman Dot
- type: pearson_max
value: 0.8691840566814281
name: Pearson Max
- type: spearman_max
value: 0.8676618157111291
name: Spearman Max
- type: pearson_cosine
value: 0.8401688802461491
name: Pearson Cosine
- type: spearman_cosine
value: 0.8365597846163649
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8276067064758832
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8315689286193226
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8277930159560367
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.831557090168861
name: Spearman Euclidean
- type: pearson_dot
value: 0.8170329546065831
name: Pearson Dot
- type: spearman_dot
value: 0.8083098402255348
name: Spearman Dot
- type: pearson_max
value: 0.8401688802461491
name: Pearson Max
- type: spearman_max
value: 0.8365597846163649
name: Spearman Max
---
# SentenceTransformer based on indobenchmark/indobert-large-p2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [indobenchmark/indobert-large-p2](https://huggingface.co/indobenchmark/indobert-large-p2). It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [indobenchmark/indobert-large-p2](https://huggingface.co/indobenchmark/indobert-large-p2)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 1024 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("quarkss/indobert-large-stsb")
# Run inference
sentences = [
'Seorang pria sedang berjalan dengan seekor kuda.',
'Seorang pria sedang menuntun seekor kuda dengan tali kekang.',
'Seorang pria sedang menembakkan pistol.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8692 |
| **spearman_cosine** | **0.8677** |
| pearson_manhattan | 0.8592 |
| spearman_manhattan | 0.8626 |
| pearson_euclidean | 0.8599 |
| spearman_euclidean | 0.8633 |
| pearson_dot | 0.8441 |
| spearman_dot | 0.8392 |
| pearson_max | 0.8692 |
| spearman_max | 0.8677 |
#### Semantic Similarity
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:-------------------|:-----------|
| pearson_cosine | 0.8402 |
| spearman_cosine | 0.8366 |
| pearson_manhattan | 0.8276 |
| spearman_manhattan | 0.8316 |
| pearson_euclidean | 0.8278 |
| spearman_euclidean | 0.8316 |
| pearson_dot | 0.817 |
| spearman_dot | 0.8083 |
| pearson_max | 0.8402 |
| **spearman_max** | **0.8366** |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 5,749 training samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details |
Sebuah pesawat sedang lepas landas.
| Sebuah pesawat terbang sedang lepas landas.
| 1.0
|
| Seorang pria sedang memainkan seruling besar.
| Seorang pria sedang memainkan seruling.
| 0.76
|
| Seorang pria sedang mengoleskan keju parut di atas pizza.
| Seorang pria sedang mengoleskan keju parut di atas pizza yang belum matang.
| 0.76
|
* Loss: [CosineSimilarityLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `weight_decay`: 0.01
- `num_train_epochs`: 5
- `warmup_ratio`: 0.1
- `fp16`: True
#### All Hyperparameters