---
base_model: indobenchmark/indobert-base-p2
datasets: []
language: []
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:5749
- loss:CosineSimilarityLoss
widget:
- source_sentence: Dua ekor anjing berenang di kolam renang.
sentences:
- Anjing-anjing sedang berenang di kolam renang.
- Seekor binatang sedang berjalan di atas tanah.
- Seorang pria sedang menyeka pinggiran mangkuk.
- source_sentence: Seorang anak perempuan sedang mengiris mentega menjadi dua bagian.
sentences:
- Seorang wanita sedang mengiris tahu.
- Dua orang berkelahi.
- Seorang pria sedang menari.
- source_sentence: Seorang gadis sedang makan kue mangkuk.
sentences:
- Seorang pria sedang mengiris bawang putih dengan alat pengiris mandolin.
- Seorang pria sedang memotong dan memotong bawang.
- Seorang wanita sedang makan kue mangkuk.
- source_sentence: Sebuah helikopter mendarat di landasan helikopter.
sentences:
- Seorang pria sedang mengiris mentimun.
- Seorang pria sedang memotong batang pohon dengan kapak.
- Sebuah helikopter mendarat.
- source_sentence: Seorang pria sedang berjalan dengan seekor kuda.
sentences:
- Seorang pria sedang menuntun seekor kuda dengan tali kekang.
- Seorang pria sedang menembakkan pistol.
- Seorang wanita sedang memetik tomat.
model-index:
- name: SentenceTransformer based on indobenchmark/indobert-base-p2
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: Unknown
type: unknown
metrics:
- type: pearson_cosine
value: 0.8577280779646681
name: Pearson Cosine
- type: spearman_cosine
value: 0.8588776334781149
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8315261521874587
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8355406849443783
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8318083198603524
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8359194889385243
name: Spearman Euclidean
- type: pearson_dot
value: 0.7767060276322824
name: Pearson Dot
- type: spearman_dot
value: 0.783607744137448
name: Spearman Dot
- type: pearson_max
value: 0.8577280779646681
name: Pearson Max
- type: spearman_max
value: 0.8588776334781149
name: Spearman Max
- type: pearson_cosine
value: 0.8122790124383042
name: Pearson Cosine
- type: spearman_cosine
value: 0.8123119892530147
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7987643661729152
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7966661480553803
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7992882233155829
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.797227936168015
name: Spearman Euclidean
- type: pearson_dot
value: 0.712195542080357
name: Pearson Dot
- type: spearman_dot
value: 0.7014898656834544
name: Spearman Dot
- type: pearson_max
value: 0.8122790124383042
name: Pearson Max
- type: spearman_max
value: 0.8123119892530147
name: Spearman Max
---
# SentenceTransformer based on indobenchmark/indobert-base-p2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## STSB Test
| Model | Spearman Correlation |
|:----------------------------------------|-----------------------:|
| quarkss/indobert-large-stsb | 0.8366 |
| quarkss/indobert-base-stsb | 0.8123 |
| sentence-transformers/all-MiniLM-L6-v2 | 0.5952 |
| indobenchmark/indobert-large-p2 | 0.5673 |
| sentence-transformers/all-mpnet-base-v2 | 0.5531 |
| sentence-transformers/stsb-bert-base | 0.5349 |
| indobenchmark/indobert-base-p2 | 0.5309 |
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("quarkss/indobert-base-stsb")
# Run inference
sentences = [
'Seorang pria sedang berjalan dengan seekor kuda.',
'Seorang pria sedang menuntun seekor kuda dengan tali kekang.',
'Seorang pria sedang menembakkan pistol.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Semantic Similarity
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| pearson_cosine | 0.8577 |
| **spearman_cosine** | **0.8589** |
| pearson_manhattan | 0.8315 |
| spearman_manhattan | 0.8355 |
| pearson_euclidean | 0.8318 |
| spearman_euclidean | 0.8359 |
| pearson_dot | 0.7767 |
| spearman_dot | 0.7836 |
| pearson_max | 0.8577 |
| spearman_max | 0.8589 |
#### Semantic Similarity
* Evaluated with [EmbeddingSimilarityEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
|:-------------------|:-----------|
| pearson_cosine | 0.8123 |
| spearman_cosine | 0.8123 |
| pearson_manhattan | 0.7988 |
| spearman_manhattan | 0.7967 |
| pearson_euclidean | 0.7993 |
| spearman_euclidean | 0.7972 |
| pearson_dot | 0.7122 |
| spearman_dot | 0.7015 |
| pearson_max | 0.8123 |
| **spearman_max** | **0.8123** |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 5,749 training samples
* Columns: sentence1
, sentence2
, and score
* Approximate statistics based on the first 1000 samples:
| | sentence1 | sentence2 | score |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
| type | string | string | float |
| details |
Sebuah pesawat sedang lepas landas.
| Sebuah pesawat terbang sedang lepas landas.
| 1.0
|
| Seorang pria sedang memainkan seruling besar.
| Seorang pria sedang memainkan seruling.
| 0.76
|
| Seorang pria sedang mengoleskan keju parut di atas pizza.
| Seorang pria sedang mengoleskan keju parut di atas pizza yang belum matang.
| 0.76
|
* Loss: [CosineSimilarityLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `learning_rate`: 2e-05
- `weight_decay`: 0.01
- `num_train_epochs`: 5
- `warmup_ratio`: 0.1
- `fp16`: True
#### All Hyperparameters