--- library_name: transformers license: apache-2.0 base_model: distilbert/distilbert-base-multilingual-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: Vi-DistilBert-NER results: [] --- # Vi-DistilBert-NER This model is a fine-tuned version of [distilbert/distilbert-base-multilingual-cased](https://huggingface.co/distilbert/distilbert-base-multilingual-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0946 - Precision: 0.7123 - Recall: 0.7144 - F1: 0.7133 - Accuracy: 0.9737 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1084 | 1.0 | 1250 | 0.0983 | 0.6462 | 0.7083 | 0.6758 | 0.9699 | | 0.0712 | 2.0 | 2500 | 0.0921 | 0.6838 | 0.7229 | 0.7028 | 0.9723 | | 0.0532 | 3.0 | 3750 | 0.0946 | 0.7123 | 0.7144 | 0.7133 | 0.9737 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1