Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: pytorch
|
3 |
+
license: agpl-3.0
|
4 |
+
tags:
|
5 |
+
- real_time
|
6 |
+
- quantized
|
7 |
+
- android
|
8 |
+
pipeline_tag: object-detection
|
9 |
+
|
10 |
+
---
|
11 |
+
|
12 |
+

|
13 |
+
|
14 |
+
# YOLOv11-Detection-Quantized: Optimized for Mobile Deployment
|
15 |
+
## Quantized real-time object detection optimized for mobile and edge by Ultralytics
|
16 |
+
|
17 |
+
|
18 |
+
Ultralytics YOLOv11 is a machine learning model that predicts bounding boxes and classes of objects in an image. This model is post-training quantized to int8 using samples from the COCO dataset.
|
19 |
+
|
20 |
+
This model is an implementation of YOLOv11-Detection-Quantized found [here](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/detect).
|
21 |
+
|
22 |
+
|
23 |
+
More details on model performance across various devices, can be found [here](https://aihub.qualcomm.com/models/yolov11_det_quantized).
|
24 |
+
|
25 |
+
### Model Details
|
26 |
+
|
27 |
+
- **Model Type:** Object detection
|
28 |
+
- **Model Stats:**
|
29 |
+
- Model checkpoint: YOLOv11-N
|
30 |
+
- Input resolution: 640x640
|
31 |
+
- Number of parameters: 2.64M
|
32 |
+
- Model size: 2.83 MB
|
33 |
+
|
34 |
+
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
35 |
+
|---|---|---|---|---|---|---|---|---|
|
36 |
+
| YOLOv11-Detection-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 1.833 ms | 0 - 12 MB | INT8 | NPU | -- |
|
37 |
+
| YOLOv11-Detection-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 1.822 ms | 1 - 4 MB | INT8 | NPU | -- |
|
38 |
+
| YOLOv11-Detection-Quantized | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 10.152 ms | 0 - 20 MB | INT8 | NPU | -- |
|
39 |
+
| YOLOv11-Detection-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 1.202 ms | 0 - 34 MB | INT8 | NPU | -- |
|
40 |
+
| YOLOv11-Detection-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 1.223 ms | 1 - 20 MB | INT8 | NPU | -- |
|
41 |
+
| YOLOv11-Detection-Quantized | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 7.445 ms | 1 - 64 MB | INT8 | NPU | -- |
|
42 |
+
| YOLOv11-Detection-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 0.924 ms | 0 - 33 MB | INT8 | NPU | -- |
|
43 |
+
| YOLOv11-Detection-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 1.24 ms | 1 - 30 MB | INT8 | NPU | -- |
|
44 |
+
| YOLOv11-Detection-Quantized | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 7.109 ms | 2 - 63 MB | INT8 | NPU | -- |
|
45 |
+
| YOLOv11-Detection-Quantized | SA7255P ADP | SA7255P | TFLITE | 9.079 ms | 0 - 22 MB | INT8 | NPU | -- |
|
46 |
+
| YOLOv11-Detection-Quantized | SA7255P ADP | SA7255P | QNN | 8.966 ms | 1 - 9 MB | INT8 | NPU | -- |
|
47 |
+
| YOLOv11-Detection-Quantized | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 1.832 ms | 0 - 13 MB | INT8 | NPU | -- |
|
48 |
+
| YOLOv11-Detection-Quantized | SA8255 (Proxy) | SA8255P Proxy | QNN | 1.817 ms | 1 - 4 MB | INT8 | NPU | -- |
|
49 |
+
| YOLOv11-Detection-Quantized | SA8295P ADP | SA8295P | TFLITE | 2.662 ms | 0 - 26 MB | INT8 | NPU | -- |
|
50 |
+
| YOLOv11-Detection-Quantized | SA8295P ADP | SA8295P | QNN | 2.607 ms | 1 - 16 MB | INT8 | NPU | -- |
|
51 |
+
| YOLOv11-Detection-Quantized | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 1.819 ms | 0 - 10 MB | INT8 | NPU | -- |
|
52 |
+
| YOLOv11-Detection-Quantized | SA8650 (Proxy) | SA8650P Proxy | QNN | 1.823 ms | 1 - 4 MB | INT8 | NPU | -- |
|
53 |
+
| YOLOv11-Detection-Quantized | SA8775P ADP | SA8775P | TFLITE | 2.715 ms | 0 - 22 MB | INT8 | NPU | -- |
|
54 |
+
| YOLOv11-Detection-Quantized | SA8775P ADP | SA8775P | QNN | 2.688 ms | 1 - 11 MB | INT8 | NPU | -- |
|
55 |
+
| YOLOv11-Detection-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | TFLITE | 4.081 ms | 0 - 28 MB | INT8 | NPU | -- |
|
56 |
+
| YOLOv11-Detection-Quantized | RB3 Gen 2 (Proxy) | QCS6490 Proxy | QNN | 5.937 ms | 1 - 13 MB | INT8 | NPU | -- |
|
57 |
+
| YOLOv11-Detection-Quantized | RB5 (Proxy) | QCS8250 Proxy | TFLITE | 66.03 ms | 1 - 11 MB | INT8 | NPU | -- |
|
58 |
+
| YOLOv11-Detection-Quantized | QCS8275 (Proxy) | QCS8275 Proxy | TFLITE | 9.079 ms | 0 - 22 MB | INT8 | NPU | -- |
|
59 |
+
| YOLOv11-Detection-Quantized | QCS8275 (Proxy) | QCS8275 Proxy | QNN | 8.966 ms | 1 - 9 MB | INT8 | NPU | -- |
|
60 |
+
| YOLOv11-Detection-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 1.821 ms | 0 - 8 MB | INT8 | NPU | -- |
|
61 |
+
| YOLOv11-Detection-Quantized | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 1.804 ms | 1 - 4 MB | INT8 | NPU | -- |
|
62 |
+
| YOLOv11-Detection-Quantized | QCS9075 (Proxy) | QCS9075 Proxy | TFLITE | 2.715 ms | 0 - 22 MB | INT8 | NPU | -- |
|
63 |
+
| YOLOv11-Detection-Quantized | QCS9075 (Proxy) | QCS9075 Proxy | QNN | 2.688 ms | 1 - 11 MB | INT8 | NPU | -- |
|
64 |
+
| YOLOv11-Detection-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 1.98 ms | 0 - 30 MB | INT8 | NPU | -- |
|
65 |
+
| YOLOv11-Detection-Quantized | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 2.242 ms | 1 - 30 MB | INT8 | NPU | -- |
|
66 |
+
| YOLOv11-Detection-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 2.097 ms | 1 - 1 MB | INT8 | NPU | -- |
|
67 |
+
| YOLOv11-Detection-Quantized | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 10.967 ms | 2 - 2 MB | INT8 | NPU | -- |
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
## License
|
73 |
+
* The license for the original implementation of YOLOv11-Detection-Quantized can be found
|
74 |
+
[here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE).
|
75 |
+
* The license for the compiled assets for on-device deployment can be found [here](https://github.com/ultralytics/ultralytics/blob/main/LICENSE)
|
76 |
+
|
77 |
+
|
78 |
+
|
79 |
+
## References
|
80 |
+
* [Ultralytics YOLOv8 Docs: Object Detection](https://docs.ultralytics.com/tasks/detect/)
|
81 |
+
* [Source Model Implementation](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/yolo/detect)
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
## Community
|
86 |
+
* Join [our AI Hub Slack community](https://qualcomm-ai-hub.slack.com/join/shared_invite/zt-2d5zsmas3-Sj0Q9TzslueCjS31eXG2UA#/shared-invite/email) to collaborate, post questions and learn more about on-device AI.
|
87 |
+
* For questions or feedback please [reach out to us](mailto:[email protected]).
|
88 |
+
|
89 |
+
## Usage and Limitations
|
90 |
+
|
91 |
+
Model may not be used for or in connection with any of the following applications:
|
92 |
+
|
93 |
+
- Accessing essential private and public services and benefits;
|
94 |
+
- Administration of justice and democratic processes;
|
95 |
+
- Assessing or recognizing the emotional state of a person;
|
96 |
+
- Biometric and biometrics-based systems, including categorization of persons based on sensitive characteristics;
|
97 |
+
- Education and vocational training;
|
98 |
+
- Employment and workers management;
|
99 |
+
- Exploitation of the vulnerabilities of persons resulting in harmful behavior;
|
100 |
+
- General purpose social scoring;
|
101 |
+
- Law enforcement;
|
102 |
+
- Management and operation of critical infrastructure;
|
103 |
+
- Migration, asylum and border control management;
|
104 |
+
- Predictive policing;
|
105 |
+
- Real-time remote biometric identification in public spaces;
|
106 |
+
- Recommender systems of social media platforms;
|
107 |
+
- Scraping of facial images (from the internet or otherwise); and/or
|
108 |
+
- Subliminal manipulation
|