Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -18,7 +18,7 @@ tags:
|
|
| 18 |
|
| 19 |
SwinSmall is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.
|
| 20 |
|
| 21 |
-
This model is an implementation of Swin-Small found [here](
|
| 22 |
This repository provides scripts to run Swin-Small on Qualcomm® devices.
|
| 23 |
More details on model performance across various devices, can be found
|
| 24 |
[here](https://aihub.qualcomm.com/models/swin_small).
|
|
@@ -33,15 +33,32 @@ More details on model performance across various devices, can be found
|
|
| 33 |
- Number of parameters: 50.4M
|
| 34 |
- Model size: 193 MB
|
| 35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
|
| 38 |
|
| 39 |
-
| Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
| 40 |
-
| ---|---|---|---|---|---|---|---|
|
| 41 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | TFLite | 21.002 ms | 0 - 4 MB | FP16 | NPU | [Swin-Small.tflite](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.tflite)
|
| 42 |
-
| Samsung Galaxy S23 Ultra (Android 13) | Snapdragon® 8 Gen 2 | QNN Model Library | 23.699 ms | 0 - 37 MB | FP16 | NPU | [Swin-Small.so](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.so)
|
| 43 |
-
|
| 44 |
-
|
| 45 |
|
| 46 |
## Installation
|
| 47 |
|
|
@@ -96,16 +113,16 @@ device. This script does the following:
|
|
| 96 |
```bash
|
| 97 |
python -m qai_hub_models.models.swin_small.export
|
| 98 |
```
|
| 99 |
-
|
| 100 |
```
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
|
|
|
| 109 |
```
|
| 110 |
|
| 111 |
|
|
@@ -204,15 +221,19 @@ provides instructions on how to use the `.so` shared library in an Android appl
|
|
| 204 |
Get more details on Swin-Small's performance across various devices [here](https://aihub.qualcomm.com/models/swin_small).
|
| 205 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
| 206 |
|
|
|
|
| 207 |
## License
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
|
|
|
| 211 |
|
| 212 |
## References
|
| 213 |
* [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030)
|
| 214 |
* [Source Model Implementation](https://github.com/pytorch/vision/blob/main/torchvision/models/swin_transformer.py)
|
| 215 |
|
|
|
|
|
|
|
| 216 |
## Community
|
| 217 |
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
| 218 |
* For questions or feedback please [reach out to us](mailto:[email protected]).
|
|
|
|
| 18 |
|
| 19 |
SwinSmall is a machine learning model that can classify images from the Imagenet dataset. It can also be used as a backbone in building more complex models for specific use cases.
|
| 20 |
|
| 21 |
+
This model is an implementation of Swin-Small found [here]({source_repo}).
|
| 22 |
This repository provides scripts to run Swin-Small on Qualcomm® devices.
|
| 23 |
More details on model performance across various devices, can be found
|
| 24 |
[here](https://aihub.qualcomm.com/models/swin_small).
|
|
|
|
| 33 |
- Number of parameters: 50.4M
|
| 34 |
- Model size: 193 MB
|
| 35 |
|
| 36 |
+
| Model | Device | Chipset | Target Runtime | Inference Time (ms) | Peak Memory Range (MB) | Precision | Primary Compute Unit | Target Model
|
| 37 |
+
|---|---|---|---|---|---|---|---|---|
|
| 38 |
+
| Swin-Small | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | TFLITE | 18.699 ms | 0 - 5 MB | FP16 | NPU | [Swin-Small.tflite](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.tflite) |
|
| 39 |
+
| Swin-Small | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | QNN | 21.583 ms | 0 - 38 MB | FP16 | NPU | [Swin-Small.so](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.so) |
|
| 40 |
+
| Swin-Small | Samsung Galaxy S23 | Snapdragon® 8 Gen 2 | ONNX | 34.575 ms | 0 - 130 MB | FP16 | NPU | [Swin-Small.onnx](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.onnx) |
|
| 41 |
+
| Swin-Small | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | TFLITE | 12.959 ms | 0 - 526 MB | FP16 | NPU | [Swin-Small.tflite](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.tflite) |
|
| 42 |
+
| Swin-Small | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | QNN | 14.588 ms | 0 - 156 MB | FP16 | NPU | [Swin-Small.so](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.so) |
|
| 43 |
+
| Swin-Small | Samsung Galaxy S24 | Snapdragon® 8 Gen 3 | ONNX | 23.854 ms | 0 - 783 MB | FP16 | NPU | [Swin-Small.onnx](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.onnx) |
|
| 44 |
+
| Swin-Small | QCS8550 (Proxy) | QCS8550 Proxy | TFLITE | 18.642 ms | 0 - 3 MB | FP16 | NPU | [Swin-Small.tflite](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.tflite) |
|
| 45 |
+
| Swin-Small | QCS8550 (Proxy) | QCS8550 Proxy | QNN | 20.236 ms | 1 - 2 MB | FP16 | NPU | Use Export Script |
|
| 46 |
+
| Swin-Small | SA8255 (Proxy) | SA8255P Proxy | TFLITE | 18.785 ms | 0 - 3 MB | FP16 | NPU | [Swin-Small.tflite](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.tflite) |
|
| 47 |
+
| Swin-Small | SA8255 (Proxy) | SA8255P Proxy | QNN | 20.621 ms | 1 - 2 MB | FP16 | NPU | Use Export Script |
|
| 48 |
+
| Swin-Small | SA8775 (Proxy) | SA8775P Proxy | TFLITE | 18.67 ms | 0 - 5 MB | FP16 | NPU | [Swin-Small.tflite](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.tflite) |
|
| 49 |
+
| Swin-Small | SA8775 (Proxy) | SA8775P Proxy | QNN | 20.685 ms | 1 - 2 MB | FP16 | NPU | Use Export Script |
|
| 50 |
+
| Swin-Small | SA8650 (Proxy) | SA8650P Proxy | TFLITE | 18.664 ms | 0 - 3 MB | FP16 | NPU | [Swin-Small.tflite](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.tflite) |
|
| 51 |
+
| Swin-Small | SA8650 (Proxy) | SA8650P Proxy | QNN | 20.596 ms | 1 - 2 MB | FP16 | NPU | Use Export Script |
|
| 52 |
+
| Swin-Small | QCS8450 (Proxy) | QCS8450 Proxy | TFLITE | 24.22 ms | 0 - 510 MB | FP16 | NPU | [Swin-Small.tflite](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.tflite) |
|
| 53 |
+
| Swin-Small | QCS8450 (Proxy) | QCS8450 Proxy | QNN | 26.468 ms | 1 - 155 MB | FP16 | NPU | Use Export Script |
|
| 54 |
+
| Swin-Small | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | TFLITE | 11.752 ms | 2 - 232 MB | FP16 | NPU | [Swin-Small.tflite](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.tflite) |
|
| 55 |
+
| Swin-Small | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | QNN | 12.483 ms | 1 - 162 MB | FP16 | NPU | Use Export Script |
|
| 56 |
+
| Swin-Small | Snapdragon 8 Elite QRD | Snapdragon® 8 Elite | ONNX | 20.333 ms | 0 - 313 MB | FP16 | NPU | [Swin-Small.onnx](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.onnx) |
|
| 57 |
+
| Swin-Small | Snapdragon X Elite CRD | Snapdragon® X Elite | QNN | 21.141 ms | 1 - 1 MB | FP16 | NPU | Use Export Script |
|
| 58 |
+
| Swin-Small | Snapdragon X Elite CRD | Snapdragon® X Elite | ONNX | 37.889 ms | 118 - 118 MB | FP16 | NPU | [Swin-Small.onnx](https://huggingface.co/qualcomm/Swin-Small/blob/main/Swin-Small.onnx) |
|
| 59 |
|
| 60 |
|
| 61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
## Installation
|
| 64 |
|
|
|
|
| 113 |
```bash
|
| 114 |
python -m qai_hub_models.models.swin_small.export
|
| 115 |
```
|
|
|
|
| 116 |
```
|
| 117 |
+
Profiling Results
|
| 118 |
+
------------------------------------------------------------
|
| 119 |
+
Swin-Small
|
| 120 |
+
Device : Samsung Galaxy S23 (13)
|
| 121 |
+
Runtime : TFLITE
|
| 122 |
+
Estimated inference time (ms) : 18.7
|
| 123 |
+
Estimated peak memory usage (MB): [0, 5]
|
| 124 |
+
Total # Ops : 1563
|
| 125 |
+
Compute Unit(s) : NPU (1563 ops)
|
| 126 |
```
|
| 127 |
|
| 128 |
|
|
|
|
| 221 |
Get more details on Swin-Small's performance across various devices [here](https://aihub.qualcomm.com/models/swin_small).
|
| 222 |
Explore all available models on [Qualcomm® AI Hub](https://aihub.qualcomm.com/)
|
| 223 |
|
| 224 |
+
|
| 225 |
## License
|
| 226 |
+
* The license for the original implementation of Swin-Small can be found [here](https://github.com/pytorch/vision/blob/main/LICENSE).
|
| 227 |
+
* The license for the compiled assets for on-device deployment can be found [here](https://qaihub-public-assets.s3.us-west-2.amazonaws.com/qai-hub-models/Qualcomm+AI+Hub+Proprietary+License.pdf)
|
| 228 |
+
|
| 229 |
+
|
| 230 |
|
| 231 |
## References
|
| 232 |
* [Swin Transformer: Hierarchical Vision Transformer using Shifted Windows](https://arxiv.org/abs/2103.14030)
|
| 233 |
* [Source Model Implementation](https://github.com/pytorch/vision/blob/main/torchvision/models/swin_transformer.py)
|
| 234 |
|
| 235 |
+
|
| 236 |
+
|
| 237 |
## Community
|
| 238 |
* Join [our AI Hub Slack community](https://aihub.qualcomm.com/community/slack) to collaborate, post questions and learn more about on-device AI.
|
| 239 |
* For questions or feedback please [reach out to us](mailto:[email protected]).
|