cmmd-pytorch / main.py
qninhdt's picture
Upload 14 files
d344462 verified
# coding=utf-8
# Copyright 2024 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The main entry point for the CMMD calculation."""
from absl import app
from absl import flags
import distance
import embedding
import io_util
import numpy as np
_BATCH_SIZE = flags.DEFINE_integer("batch_size", 32, "Batch size for embedding generation.")
_MAX_COUNT = flags.DEFINE_integer("max_count", -1, "Maximum number of images to read from each directory.")
_REF_EMBED_FILE = flags.DEFINE_string(
"ref_embed_file", None, "Path to the pre-computed embedding file for the reference images."
)
def compute_cmmd(ref_dir, eval_dir, ref_embed_file=None, batch_size=32, max_count=-1):
"""Calculates the CMMD distance between reference and eval image sets.
Args:
ref_dir: Path to the directory containing reference images.
eval_dir: Path to the directory containing images to be evaluated.
ref_embed_file: Path to the pre-computed embedding file for the reference images.
batch_size: Batch size used in the CLIP embedding calculation.
max_count: Maximum number of images to use from each directory. A
non-positive value reads all images available except for the images
dropped due to batching.
Returns:
The CMMD value between the image sets.
"""
if ref_dir and ref_embed_file:
raise ValueError("`ref_dir` and `ref_embed_file` both cannot be set at the same time.")
embedding_model = embedding.ClipEmbeddingModel()
if ref_embed_file is not None:
ref_embs = np.load(ref_embed_file).astype("float32")
else:
ref_embs = io_util.compute_embeddings_for_dir(ref_dir, embedding_model, batch_size, max_count).astype(
"float32"
)
eval_embs = io_util.compute_embeddings_for_dir(eval_dir, embedding_model, batch_size, max_count).astype("float32")
val = distance.mmd(ref_embs, eval_embs)
return val.numpy()
def main(argv):
if len(argv) != 3:
raise app.UsageError("Too few/too many command-line arguments.")
_, dir1, dir2 = argv
print(
"The CMMD value is: "
f" {compute_cmmd(dir1, dir2, _REF_EMBED_FILE.value, _BATCH_SIZE.value, _MAX_COUNT.value):.3f}"
)
if __name__ == "__main__":
app.run(main)