{ "policy_class": { ":type:": "", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMCVNBQ1BvbGljeZSTlC4=", "__module__": "stable_baselines3.sac.policies", "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "", "_build": "", "_get_constructor_parameters": "", "reset_noise": "", "make_actor": "", "make_critic": "", "forward": "", "_predict": "", "set_training_mode": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7efdd251b140>" }, "verbose": 1, "policy_kwargs": { "log_std_init": -3, "net_arch": [ 400, 300 ], "use_sde": true }, "observation_space": { ":type:": "", ":serialized:": "gAWVMQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLFoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWWAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxaFlIwBQ5R0lFKUjARoaWdolGgTKJZYAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLFoWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLFoWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLFoWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [ 22 ], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False]", "_np_random": null }, "action_space": { ":type:": "", ":serialized:": "gAWVPAwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLBoWUjAFDlHSUUpSMBGhpZ2iUaBMolhgAAAAAAAAAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgLSwaFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWBgAAAAAAAAABAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYGAAAAAAAAAAEBAQEBAZRoIksGhZRoFnSUUpSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEl9fcmFuZG9tc3RhdGVfY3RvcpSTlIwHTVQxOTkzN5RoLowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwHTVQxOTkzN5SMBXN0YXRllH2UKIwDa2V5lGgTKJbACQAAAAAAAAAAAIBTwrOchwO1k3Lsq1vo5rLyz7aB2tUG72GhMU2ga7XM2RPmGJ90nHkvyKUbgMR5AUmeD0PkXeAYk5ITVczUSilk0giVvjTQnkRyegPwrb8Kc5t7PulgsQbadQNFC2591hZq6wQ0ZoO38/WlL2nvQmNDtVz3wndSzEZENy0IiW7Qjq53+xi2gE97nvlPMuwS2LmOXoWpGcquPXYtZytCgJ7F7scf9SIBXUvPJA/MGVJkRFeYcJ0K9RIXtela3jvE/0HPOrFftofdM9hYiaqizX97P8mUt2wPQx8xmX0bYJCrtwcdGUzeyPuOugD1z6ka3iX+IAalFvzQduPBTvXKQ9MBWnnfUFetzaqYhTrP0WHhMA/Ht9nWRUX4vUiuWi77gKSTLtizn2cHsqRyJMj43mOVvrbJtm3T5laAgDosou93H+ZNC0HiTVqmVP8Lsv3/JsoIWfaq43/tiUiTGgfVTTF1psbquA6tH5Icya9TC+0oH7X0htvTuZKBVDKM0C+fIAM8l/emTHKVm2ft/85WlYRpZ+XoFwvDLSCusSBQr4f7w/xdYy4GCKdeDDOfezLj5k6WvjminpO26pfQqfP9LJIYOUEgrwmoo5vMHp8a36i8kcQzwqUvi94rCQuS64xYFp7HcUF1aySvLmqGyXEyCeTa2GHwNpeYB9u4jyPRKocxbWSV4hOL16R9fH95KLmFfUaMD8zrZmLG5rLUfzMf1WOxNFwZpzInS+HWE1F4MWg2xcVst8upoi9ssNCNjtPbz1ley6m8DG7YZVNupay35yQ8/PAfu8uKRQsL7B4ArDFquqb66ABeDLPvviZ4c6y9Bi67Xye+uu6eNlYO/Boq5iiETBR9Kemi0T1eFf33JRNzywY9CJ1N9eTOb+3wxY/yK3iXhVISAMufwZby3YMCHwTAVr8o4ahkQaNipnYgwDvQT4XYuqBpmVAsUw41MjHfK43kXZ7UxPi/bB0FEr1H6UYynEiI2V3I7DDEsMFNEMyF3sA+J2YPBAGe9oh5woVr3lu3AeREERRPmD778jQMODrzkRfg4w7Zi1M+ozc9CW5Lim4SEBBFW6Q0ZKHiBgOBwE8pmXhOE1/4b4TsSX1+ZYlw/f1KJ/Doyf4YSKwzVGEdjTldkdS/lbivyQPaNIsxj4ggvb4u1CtbuK3vLbz6wSJwugR9g6TL1kkXqXR9H6xcRrB/5EQf0u+1EnjLN/GvsqKw2mvVrG/Vp7kINdL5dPO44b8Emce+3xqudjVdYf1J2QI56iTowjwYEK2NMLEnklukjknSLQDrqYlpFb0sx8/oKKXf9xVFD243YpO1XejusnBjhcKePsMmaqtTCh8MOXsSTQ+g3vDQeHxgc7LyqE/DtXwAt2Nmft5i2MJAiV1C8dszUjvdG0ItC9AYUxdQInTbakZGpO9lfldZKLOpuBfpMmYjosMX3Bylh5qUHtwPB6V+p2nMdGbKNFshf1v7Di6P/9oNGA/ZKCI4Cr8P/3/RJuAr8TQVDJyWE1UCRsrBeEDEoZzOm8mjDSYUVQC3/l9PkoCyZBMC3ynQWysYwNN+ThHNmCplKb6KFVFLfvVPHe3CkYDWCij8Ah8mHyyUkLeGRHU4YI3ssA8YLBsz2seUpJTi66EmJ9/X3qH2rWQ8yV3r3z0x8otWS8KXuh8JG6s9Rbjpx4koT3nWxAPW/xwrQcrUma4FMJcB6UJQIgU0saTe0xc1Wa64UXejfFvhXhPUgBgh8F3IRUeEghk4T8kRjv11pDDyeNgS1DpjBnqQ0IFh+uOrY6CUhNxF3AOYg0vjaujoedtaAtlDwJ78SI9UG1YfCG8ZQcrUU043NHNeBPXMoSD5YCKB64rhBUjF0hMzhi9TJi+lAm4l37EYPWejsFggpd1XhoOWxGdZIyZL7NPJO8LT5OAEwI2ky90KGNoH9dOsxWybS+A+YJizCfTrsxNhZ+bmgKqqY1yKqhF8UvY7abEVPVUxwoOvEcF0FSFIblSYB6vHzooATK1uwJufo46PxjTZXBXKfNd3RYl8uKh4YxkhIzV6d5Z9NzWZDoKl0PEmpSZTzr8qwEvcFvRLY0CoXKwUlkrEPAt6PzHP7EfwjEQfOWSKI0f7YgirTrrcUDCLrCDp2ByvIOpD6U0PCfz3yfKWtxhKGKAOu2sUE17MrHdmOmQ8Kc9R5AHiElStgJQnLkLLK0L/HVSwHIp7P9pI0RaeVafNh0l/Y+govRh+ZpHcqlfOL1rHcEc+CTVx2aB1WSp68UnQNR1MEVCP+aFoqpxpPSsokuDL/XUCFZbidfv6QB2BHRvWICx4jRNswO2iEG6qpRl+ox9Qqx0jy/Zp5R3T4io6M8EV7tNlELs5RiZ/vz1JFOnD2Cy3i3PHu0tqnwmcW3aR4qGp3e8GCqm+WzG/HQNw8L5uj+oiV0qICfkPtM+N5YvMnWCamTWZUo7JY6/9nOVFN97zISwyxFyB0/Fs67EuOU7CjW4WH02Meg7P/FucjrYjj1nNPn0ZQI20AvvhSqOVGjJdnkQsSOFOf4Xl9h8SRjZOdKyAo7hbBv/EPjVLiYEvstxTIXvrJtXtjHQvpXZAahJ/KEcWoxAmz+Fos89bXyZYlv9QOX3Rk31MTNx1e9myYJ6rMJqALpgMend+in7mcBBKdP8HK3aPvP7pyeX9pmHqgqznGsQya7OksVtc1Wh/2E2ZfkTQNDYzy4Gqp5b3mnrPzJKc7FREA7byhhaxtXJ5ho2VYtms60gxkNGONt5xJLAwuWsGHDiZlWG3gOA5DEjX4/uw8dksx/z1T7ly1/WsPSvUBeDJePM7Eq8LFYyGvPoCHX37NqX9sAinD7RXs+rzk9FA7hR5JyYzA4NHyNw58gu4yajvFeF6Zj8mq06dySURoZqkx4aWSJ5+9CTH0vkRa8ufqy0jjNE/illfH2I7PXsgomYo5UeAIgA6KF5vRvCSM2Qi2V9g7cvN4ss+4EM0sWDu1C7k09bLbxricGwT+CzIS15G8XYQJgUg4mDTp3NzvshbDuj7PVDkA/EuD26/IWeJhY24nKTut+UsKZhyDWA3rnsJZ9/xh8+vS6Qo5qZyj3hfWcV3KujEeJCVFdo/3UM6oy54jWkJqzJFC3SO1tbDF0RXLM/cbNRlcFaprTFcLPB7b1zGDZqLAq64ABV9oIT8+3VwlerzC+WIXzWwwM8xujB3367Ja4TGr977ZbfBZ5XeFWh+iITJKMGsk9ZUlb375ShwlsLSmk3Dma0eS2RmpSTqRW1SBVDgKPi52P9uW5nNypaMi84Ik7nYz7FxBjzTwSLxP+XDBL1OC67NDd7QpHuGm2A1xfX9eEK8C5RoCIwCdTSUiYiHlFKUKEsDaAxOTk5K/////0r/////SwB0lGJNcAKFlGgWdJRSlIwDcG9zlE1wAnWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "dtype": "float32", "_shape": [ 6 ], "low": "[-1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True]", "bounded_above": "[ True True True True True True]", "_np_random": "RandomState(MT19937)" }, "n_envs": 1, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": 0, "action_noise": null, "start_time": 1672151808333766275, "learning_rate": { ":type:": "", ":serialized:": "gAWVWwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw0L2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTSIBQwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAdybF96b28zlIwIX19uYW1lX1+UjA1ybF96b28zLnV0aWxzlIwIX19maWxlX1+UjDQvaG9tZS9xZ2FsbG91ZWRlYy9ybC1iYXNlbGluZXMzLXpvby9ybF96b28zL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKIwScHJvZ3Jlc3NfcmVtYWluaW5nlIwIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgtdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UaAmMC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9H668QI2OyhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu" }, "tensorboard_log": "runs/Walker2DBulletEnv-v0__sac__4075998952__1672151806/Walker2DBulletEnv-v0", "lr_schedule": { ":type:": "", ":serialized:": "gAWVWwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAksTQwh8AIgAFABTAJSMhAogICAgICAgIFByb2dyZXNzIHdpbGwgZGVjcmVhc2UgZnJvbSAxIChiZWdpbm5pbmcpIHRvIDAKICAgICAgICA6cGFyYW0gcHJvZ3Jlc3NfcmVtYWluaW5nOiAoZmxvYXQpCiAgICAgICAgOnJldHVybjogKGZsb2F0KQogICAgICAgIJSFlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIw0L2hvbWUvcWdhbGxvdWVkZWMvcmwtYmFzZWxpbmVzMy16b28vcmxfem9vMy91dGlscy5weZSMBGZ1bmOUTSIBQwIABpSMDWluaXRpYWxfdmFsdWWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjAdybF96b28zlIwIX19uYW1lX1+UjA1ybF96b28zLnV0aWxzlIwIX19maWxlX1+UjDQvaG9tZS9xZ2FsbG91ZWRlYy9ybC1iYXNlbGluZXMzLXpvby9ybF96b28zL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMHWxpbmVhcl9zY2hlZHVsZS48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UKIwScHJvZ3Jlc3NfcmVtYWluaW5nlIwIYnVpbHRpbnOUjAVmbG9hdJSTlIwGcmV0dXJulGgtdYwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UaAmMC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9H668QI2OyhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu" }, "_last_obs": null, "_last_episode_starts": { ":type:": "", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg==" }, "_last_original_obs": { ":type:": "", ":serialized:": "gAWVzQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZYAAAAAAAAAJw/e74AAAAAAACAP/MUDD8AAAAA+FU2vQAAAABMNWe/nVxSP3esqT06Plw+yrLevsqLbj99wKa/NU2iPYlzHT58IMM+PEkGv/v+HD491gu/AAAAAAAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLFoaUjAFDlHSUUpQu" }, "_episode_num": 2565, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": { ":type:": "", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKIIv54W1tyMAWyUTegDjAF0lEdAveqDOt4iYHV9lChoBkdAnnuOiSJTEWgHTV0DaAhHQL3x9J4SpR51fZQoaAZHQKH/FuSfUWloB03oA2gIR0C9+pFZowmFdX2UKGgGR0CiB1UNKAavaAdN6ANoCEdAvgMkiLVFyHV9lChoBkdAof5hRhttRGgHTegDaAhHQL4LujAzpHJ1fZQoaAZHQKIG2ktVaOhoB03oA2gIR0C+FFsHKOktdX2UKGgGR0CVWoYuTRplaAdNVAJoCEdAvhlv3N9piHV9lChoBkdAohZGqaPS2GgHTegDaAhHQL4iB3ztkWh1fZQoaAZHQKIabLTx5LRoB03oA2gIR0C+KqbCJoCddX2UKGgGR0CiE+1TBInSaAdN6ANoCEdAvjM4p/gBLnV9lChoBkdAoiI41pCa7WgHTegDaAhHQL47uIPsiSt1fZQoaAZHQKHHgzPa+N9oB03oA2gIR0C+RDnVPN3XdX2UKGgGR0CiKAI0IkZ8aAdN6ANoCEdAvkyrtWuHOHV9lChoBkdAoeMUpqh11WgHTegDaAhHQL5VBp2ECeV1fZQoaAZHQKIu6Z9d/rloB03oA2gIR0C+XSevUz9CdX2UKGgGR0CiDk67mMfjaAdN6ANoCEdAvmW4aNuLrHV9lChoBkdAoi5iAz544mgHTegDaAhHQL5uSb0OEuh1fZQoaAZHQKH2/lzU7S1oB03oA2gIR0C+duX1zySWdX2UKGgGR0Bsxay6cy31aAdLd2gIR0C+d+KWX1J2dX2UKGgGR0CiFVerMkhSaAdN6ANoCEdAvn9b8baRIXV9lChoBkdAof2QQOFxn2gHTegDaAhHQL6MIRw6ySp1fZQoaAZHQKJw2VUMoc9oB03oA2gIR0C+lLocrAgxdX2UKGgGR0CiBzLGza9LaAdN6ANoCEdAvp1IqOLiuXV9lChoBkdAofXf4Irvs2gHTegDaAhHQL6l6PGACnx1fZQoaAZHQKI1ETJyQxNoB03oA2gIR0C+roCyhSLqdX2UKGgGR0CiP0Fj/dZaaAdN6ANoCEdAvrcX+yZ8bHV9lChoBkdAoiLWLcbiqGgHTegDaAhHQL6/t1YQrc11fZQoaAZHQKH4XB7/n4hoB03oA2gIR0C+yEorWiDedX2UKGgGR0Ch7VnJT2nLaAdN6ANoCEdAvtDhZ6lchXV9lChoBkdAog2DJ2dNFmgHTegDaAhHQL7ZrsMAmzB1fZQoaAZHQKIp9r5ZbINoB03oA2gIR0C+4kqLXL/0dX2UKGgGR0CiHsEXDWK/aAdN6ANoCEdAvur2suFpPHV9lChoBkdAoiK0XvYvnWgHTegDaAhHQL7zm4yGi6B1fZQoaAZHQKIbQxL0z0poB03oA2gIR0C+/DSXUpd9dX2UKGgGR0CiEkmxUvPDaAdN6ANoCEdAvwTWvwEyL3V9lChoBkdAogUS4tpVTGgHTegDaAhHQL8NeqW1MM91fZQoaAZHQKIQbB68g6loB03oA2gIR0C/FhRs67uldX2UKGgGR0CiILjlHSWraAdN6ANoCEdAvx6u6tknTnV9lChoBkdAoj10mY0EYGgHTegDaAhHQL8nTaW5Yo11fZQoaAZHQKJtlJ7LMcJoB03oA2gIR0C/L9mLcbiqdX2UKGgGR0CiJEN5le4TaAdN6ANoCEdAvzh5LxqfvnV9lChoBkdAohFb+BH09WgHTegDaAhHQL9BDpQk5ZN1fZQoaAZHQKIc1UADJU5oB03oA2gIR0C/SaZb6guidX2UKGgGR0CiHmqkuYhMaAdN6ANoCEdAv1JFuWKMvXV9lChoBkdAlCTqgM+eOGgHTS8CaAhHQL9XGC6pYLd1fZQoaAZHQKI+/LZi/fxoB03oA2gIR0C/ZF8hTwUhdX2UKGgGR0CiMGTWf9P2aAdN6ANoCEdAv2zrNt65XnV9lChoBkdAojOl7a7EpGgHTegDaAhHQL91aC6H0sh1fZQoaAZHQKILrExZdOZoB03oA2gIR0C/ffLFOwgUdX2UKGgGR0CiPop++dsjaAdN6ANoCEdAv4aCa8YhuHV9lChoBkdAogxypFTef2gHTegDaAhHQL+PA4T9KmN1fZQoaAZHQKHwuhkAggZoB03oA2gIR0C/l5GBreqJdX2UKGgGR0CiJskq2BrfaAdN6ANoCEdAv6AkFX7tRnV9lChoBkdAoj9ce0XxfGgHTegDaAhHQL+orxesxPB1fZQoaAZHQKHzLwyZa3ZoB03oA2gIR0C/sUVog3cYdX2UKGgGR0CiVtrdnCfpaAdN6ANoCEdAv7nZPxhDxHV9lChoBkdAodedkc0cfmgHTegDaAhHQL/CThUipvR1fZQoaAZHQKIrdkwvg3toB03oA2gIR0C/ytW4ZuQ7dX2UKGgGR0Ch/wH1FpfyaAdN6ANoCEdAv9NYCzTnaHV9lChoBkdAoktjQ3PzF2gHTegDaAhHQL/bfpoK2KF1fZQoaAZHQKINXJQLux9oB03oA2gIR0C/4/GxUvPDdX2UKGgGR0CiTjaQeV9naAdN6ANoCEdAv+xrvUjLS3V9lChoBkdAofYHbh3qzWgHTegDaAhHQL/05FCb+cZ1fZQoaAZHQKIy/A9FF2FoB03oA2gIR0C//ZfjOs1bdX2UKGgGR0CiGu8an753aAdN6ANoCEdAwAMVJDmbLHV9lChoBkdAom7tfmcOLGgHTegDaAhHQMAHVmg8KXx1fZQoaAZHQKJmRJDmbLFoB03oA2gIR0DAC5srRSgodX2UKGgGR0CiKmoX0oSdaAdN6ANoCEdAwA/bJEpiJHV9lChoBkdAohzJUvPC22gHTegDaAhHQMAUGtU4rBl1fZQoaAZHQKI7lZq20AtoB03oA2gIR0DAGGCmVJL/dX2UKGgGR0CiLrJi7TUiaAdN6ANoCEdAwB72gK4QSXV9lChoBkdAUQ5mrbQC0WgHSzBoCEdAwB8rOVxCIHV9lChoBkdAoip5ggHNYGgHTegDaAhHQMAjcEYGdI51fZQoaAZHQJu1C4RVZLZoB00CA2gIR0DAJrYjhUBGdX2UKGgGR0CiNHeI2wV1aAdN6ANoCEdAwCrwYcebNXV9lChoBkdAolGgyylenmgHTegDaAhHQMAvNPkRzzV1fZQoaAZHQKID9z9S/CZoB03oA2gIR0DAM3KD/VAidX2UKGgGR0Ch+XdpItlJaAdN6ANoCEdAwDeZchTwUnV9lChoBkdAoifnp6hQFmgHTegDaAhHQMA7VTUy57R1fZQoaAZHQKHjSoOQQtloB03oA2gIR0DAP2njhky2dX2UKGgGR0CBEz4JNTLoaAdNAQFoCEdAwEB+8brC33V9lChoBkdAojnhhnanJmgHTegDaAhHQMBEvP99+gF1fZQoaAZHQKIpCnqFAVxoB03oA2gIR0DASQJzBAObdX2UKGgGR0Ch/kY+8oQWaAdN6ANoCEdAwE1DKRuCPXV9lChoBkdAQRdEPUaybGgHSxtoCEdAwE1lqLS/kHV9lChoBkdAoh7hpYcNpmgHTegDaAhHQMBRqsjFAFB1fZQoaAZHQKJga8q4H5doB03oA2gIR0DAVfBJbt7bdX2UKGgGR0CiQydy1eByaAdN6ANoCEdAwFosu5jH43V9lChoBkdAoj2ehCdBjWgHTegDaAhHQMBeKoegctJ1fZQoaAZHQKI/7a6jFhpoB03oA2gIR0DAYh1IGyHEdX2UKGgGR0CiI8tozvZzaAdN6ANoCEdAwGZdoEB8yHV9lChoBkdAoh+4oVmBfGgHTegDaAhHQMBqo8OkLx91fZQoaAZHQKJFT5TIeYFoB03oA2gIR0DAbuafra/RdX2UKGgGR0CiNCrn1WbPaAdN6ANoCEdAwHMhz3AVPHV9lChoBkdAdOUwgTyrgmgHS6JoCEdAwHPQCEHt4XV9lChoBkdAohemOU+s5mgHTegDaAhHQMB4Fzgl4Tt1fZQoaAZHQKJJil0o0ANoB03oA2gIR0DAfGxTl1bJdX2UKGgGR0BImdn9NvfkaAdLJGgIR0DAfJg+yJKrdX2UKGgGR0ChoLxs/IKdaAdN6ANoCEdAwIDcv3ai9XV9lChoBkdAoj32LYPGyWgHTegDaAhHQMCFIp5eJHl1ZS4=" }, "ep_success_buffer": { ":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg==" }, "_n_updates": 990000, "buffer_size": 1, "batch_size": 256, "learning_starts": 10000, "tau": 0.02, "gamma": 0.98, "gradient_steps": 8, "optimize_memory_usage": false, "replay_buffer_class": { ":type:": "", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "", "add": "", "sample": "", "_get_samples": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7efdd2560f40>" }, "replay_buffer_kwargs": {}, "train_freq": { ":type:": "", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLCGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu" }, "use_sde_at_warmup": false, "target_entropy": -6.0, "ent_coef": "auto", "target_update_interval": 1, "batch_norm_stats": [], "batch_norm_stats_target": [] }