Upload modeling_attn_mask_utils.py with huggingface_hub
Browse files- modeling_attn_mask_utils.py +247 -0
modeling_attn_mask_utils.py
ADDED
|
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
from typing import List, Optional, Tuple, Union
|
| 15 |
+
|
| 16 |
+
import torch
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class AttentionMaskConverter:
|
| 20 |
+
"""
|
| 21 |
+
A utility attention mask class that allows one to:
|
| 22 |
+
- Create a causal 4d mask
|
| 23 |
+
- Create a causal 4d mask with slided window
|
| 24 |
+
- Convert a 2d attention mask (batch_size, query_length) to a 4d attention mask (batch_size, 1, query_length,
|
| 25 |
+
key_value_length) that can be multiplied with attention scores
|
| 26 |
+
|
| 27 |
+
Parameters:
|
| 28 |
+
is_causal (`bool`):
|
| 29 |
+
Whether the attention mask should be a uni-directional (causal) or bi-directional mask.
|
| 30 |
+
|
| 31 |
+
sliding_window (`int`, *optional*):
|
| 32 |
+
Optionally, the sliding window masks can be created if `sliding_window` is defined to a positive integer.
|
| 33 |
+
"""
|
| 34 |
+
|
| 35 |
+
def __init__(self, is_causal: bool, sliding_window: Optional[int] = None):
|
| 36 |
+
self.is_causal = is_causal
|
| 37 |
+
self.sliding_window = sliding_window
|
| 38 |
+
|
| 39 |
+
if self.sliding_window is not None and self.sliding_window <= 0:
|
| 40 |
+
raise ValueError(
|
| 41 |
+
f"Make sure that when passing `sliding_window` that its value is a strictly positive integer, not `{self.sliding_window}`"
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
def to_causal_4d(
|
| 45 |
+
self,
|
| 46 |
+
batch_size: int,
|
| 47 |
+
query_length: int,
|
| 48 |
+
key_value_length: int,
|
| 49 |
+
dtype: torch.dtype = torch.float32,
|
| 50 |
+
device: Union[torch.device, "str"] = "cpu",
|
| 51 |
+
) -> torch.Tensor:
|
| 52 |
+
"""
|
| 53 |
+
Creates a causal 4D mask of (bsz, head_dim=1, query_length, key_value_length) shape and adds large negative
|
| 54 |
+
bias to upper right hand triangular matrix (causal mask).
|
| 55 |
+
"""
|
| 56 |
+
if not self.is_causal:
|
| 57 |
+
raise ValueError(f"Please use `to_causal_4d` only if {self.__class__} has `is_causal` set to True.")
|
| 58 |
+
|
| 59 |
+
# If shape is not cached, create a new causal mask and cache it
|
| 60 |
+
input_shape = (batch_size, query_length)
|
| 61 |
+
past_key_values_length = key_value_length - query_length
|
| 62 |
+
|
| 63 |
+
# create causal mask
|
| 64 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 65 |
+
causal_4d_mask = None
|
| 66 |
+
if input_shape[-1] > 1 or self.sliding_window is not None:
|
| 67 |
+
causal_4d_mask = self._make_causal_mask(
|
| 68 |
+
input_shape,
|
| 69 |
+
dtype,
|
| 70 |
+
device=device,
|
| 71 |
+
past_key_values_length=past_key_values_length,
|
| 72 |
+
sliding_window=self.sliding_window,
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
return causal_4d_mask
|
| 76 |
+
|
| 77 |
+
def to_4d(
|
| 78 |
+
self,
|
| 79 |
+
attention_mask_2d: torch.Tensor,
|
| 80 |
+
query_length: int,
|
| 81 |
+
key_value_length: Optional[int] = None,
|
| 82 |
+
dtype: torch.dtype = torch.float32,
|
| 83 |
+
) -> torch.Tensor:
|
| 84 |
+
"""
|
| 85 |
+
Converts 2D attention mask to 4D attention mask by expanding mask to (bsz, head_dim=1, query_length,
|
| 86 |
+
key_value_length) shape and by adding a large negative bias to not-attended positions. If attention_mask is
|
| 87 |
+
causal, a causal mask will be added.
|
| 88 |
+
"""
|
| 89 |
+
input_shape = (attention_mask_2d.shape[0], query_length)
|
| 90 |
+
|
| 91 |
+
# create causal mask
|
| 92 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 93 |
+
causal_4d_mask = None
|
| 94 |
+
if (input_shape[-1] > 1 or self.sliding_window is not None) and self.is_causal:
|
| 95 |
+
if key_value_length is None:
|
| 96 |
+
raise ValueError(
|
| 97 |
+
"This attention mask converter is causal. Make sure to pass `key_value_length` to correctly create a causal mask."
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
past_key_values_length = key_value_length - query_length
|
| 101 |
+
causal_4d_mask = self._make_causal_mask(
|
| 102 |
+
input_shape,
|
| 103 |
+
dtype,
|
| 104 |
+
device=attention_mask_2d.device,
|
| 105 |
+
past_key_values_length=past_key_values_length,
|
| 106 |
+
sliding_window=self.sliding_window,
|
| 107 |
+
)
|
| 108 |
+
elif self.sliding_window is not None:
|
| 109 |
+
raise NotImplementedError("Sliding window is currently only implemented for causal masking")
|
| 110 |
+
|
| 111 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
| 112 |
+
expanded_attn_mask = self._expand_mask(attention_mask_2d, dtype, tgt_len=input_shape[-1]).to(
|
| 113 |
+
attention_mask_2d.device
|
| 114 |
+
)
|
| 115 |
+
expanded_4d_mask = expanded_attn_mask if causal_4d_mask is None else expanded_attn_mask + causal_4d_mask
|
| 116 |
+
|
| 117 |
+
return expanded_4d_mask
|
| 118 |
+
|
| 119 |
+
@staticmethod
|
| 120 |
+
def _make_causal_mask(
|
| 121 |
+
input_ids_shape: torch.Size,
|
| 122 |
+
dtype: torch.dtype,
|
| 123 |
+
device: torch.device,
|
| 124 |
+
past_key_values_length: int = 0,
|
| 125 |
+
sliding_window: Optional[int] = None,
|
| 126 |
+
):
|
| 127 |
+
"""
|
| 128 |
+
Make causal mask used for bi-directional self-attention.
|
| 129 |
+
"""
|
| 130 |
+
bsz, tgt_len = input_ids_shape
|
| 131 |
+
mask = torch.full((tgt_len, tgt_len), torch.finfo(dtype).min, device=device)
|
| 132 |
+
mask_cond = torch.arange(mask.size(-1), device=device)
|
| 133 |
+
mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
|
| 134 |
+
|
| 135 |
+
mask = mask.to(dtype)
|
| 136 |
+
|
| 137 |
+
if past_key_values_length > 0:
|
| 138 |
+
mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
|
| 139 |
+
|
| 140 |
+
# add lower triangular sliding window mask if necessary
|
| 141 |
+
if sliding_window is not None:
|
| 142 |
+
diagonal = past_key_values_length - sliding_window + 1
|
| 143 |
+
|
| 144 |
+
context_mask = 1 - torch.triu(torch.ones_like(mask, dtype=torch.int), diagonal=diagonal)
|
| 145 |
+
mask.masked_fill_(context_mask.bool(), torch.finfo(dtype).min)
|
| 146 |
+
|
| 147 |
+
return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
|
| 148 |
+
|
| 149 |
+
@staticmethod
|
| 150 |
+
def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
| 151 |
+
"""
|
| 152 |
+
Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
|
| 153 |
+
"""
|
| 154 |
+
bsz, src_len = mask.size()
|
| 155 |
+
tgt_len = tgt_len if tgt_len is not None else src_len
|
| 156 |
+
|
| 157 |
+
expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
|
| 158 |
+
|
| 159 |
+
inverted_mask = 1.0 - expanded_mask
|
| 160 |
+
|
| 161 |
+
return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
def _prepare_4d_causal_attention_mask(
|
| 165 |
+
attention_mask: Optional[torch.Tensor],
|
| 166 |
+
input_shape: Union[torch.Size, Tuple, List],
|
| 167 |
+
inputs_embeds: torch.Tensor,
|
| 168 |
+
past_key_values_length: int,
|
| 169 |
+
sliding_window: Optional[int] = None,
|
| 170 |
+
):
|
| 171 |
+
"""
|
| 172 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
| 173 |
+
`(batch_size, key_value_length)`
|
| 174 |
+
|
| 175 |
+
Args:
|
| 176 |
+
attention_mask (`torch.Tensor` or `None`):
|
| 177 |
+
A 2D attention mask of shape `(batch_size, key_value_length)`
|
| 178 |
+
input_shape (`tuple(int)` or `list(int)` or `torch.Size`):
|
| 179 |
+
The input shape should be a tuple that defines `(batch_size, query_length)`.
|
| 180 |
+
inputs_embeds (`torch.Tensor`):
|
| 181 |
+
The embedded inputs as a torch Tensor.
|
| 182 |
+
past_key_values_length (`int`):
|
| 183 |
+
The length of the key value cache.
|
| 184 |
+
sliding_window (`int`, *optional*):
|
| 185 |
+
If the model uses windowed attention, a sliding window should be passed.
|
| 186 |
+
"""
|
| 187 |
+
attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window)
|
| 188 |
+
|
| 189 |
+
key_value_length = input_shape[-1] + past_key_values_length
|
| 190 |
+
|
| 191 |
+
# 4d mask is passed through the layers
|
| 192 |
+
if attention_mask is not None:
|
| 193 |
+
attention_mask = attn_mask_converter.to_4d(
|
| 194 |
+
attention_mask, input_shape[-1], key_value_length, dtype=inputs_embeds.dtype
|
| 195 |
+
)
|
| 196 |
+
else:
|
| 197 |
+
attention_mask = attn_mask_converter.to_causal_4d(
|
| 198 |
+
input_shape[0], input_shape[-1], key_value_length, dtype=inputs_embeds.dtype, device=inputs_embeds.device
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
return attention_mask
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
def _prepare_4d_attention_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
|
| 205 |
+
"""
|
| 206 |
+
Creates a non-causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
| 207 |
+
`(batch_size, key_value_length)`
|
| 208 |
+
|
| 209 |
+
Args:
|
| 210 |
+
mask (`torch.Tensor` or `None`):
|
| 211 |
+
A 2D attention mask of shape `(batch_size, key_value_length)`
|
| 212 |
+
dtype (`torch.dtype`):
|
| 213 |
+
The torch dtype the created mask shall have.
|
| 214 |
+
tgt_len (`int`):
|
| 215 |
+
The target length or query length the created mask shall have.
|
| 216 |
+
"""
|
| 217 |
+
return AttentionMaskConverter._expand_mask(mask=mask, dtype=dtype, tgt_len=tgt_len)
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
def _create_4d_causal_attention_mask(
|
| 221 |
+
input_shape: Union[torch.Size, Tuple, List],
|
| 222 |
+
dtype: torch.dtype,
|
| 223 |
+
device: torch.device,
|
| 224 |
+
past_key_values_length: int = 0,
|
| 225 |
+
sliding_window: Optional[int] = None,
|
| 226 |
+
):
|
| 227 |
+
"""
|
| 228 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)`
|
| 229 |
+
|
| 230 |
+
Args:
|
| 231 |
+
input_shape (`tuple(int)` or `list(int)` or `torch.Size`):
|
| 232 |
+
The input shape should be a tuple that defines `(batch_size, query_length)`.
|
| 233 |
+
dtype (`torch.dtype`):
|
| 234 |
+
The torch dtype the created mask shall have.
|
| 235 |
+
device (`int`):
|
| 236 |
+
The torch device the created mask shall have.
|
| 237 |
+
sliding_window (`int`, *optional*):
|
| 238 |
+
If the model uses windowed attention, a sliding window should be passed.
|
| 239 |
+
"""
|
| 240 |
+
attn_mask_converter = AttentionMaskConverter(is_causal=True, sliding_window=sliding_window)
|
| 241 |
+
|
| 242 |
+
key_value_length = past_key_values_length + input_shape[-1]
|
| 243 |
+
attention_mask = attn_mask_converter.to_causal_4d(
|
| 244 |
+
input_shape[0], input_shape[-1], key_value_length, dtype=dtype, device=device
|
| 245 |
+
)
|
| 246 |
+
|
| 247 |
+
return attention_mask
|