update model card README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
base_model: google/mt5-small
|
| 4 |
+
tags:
|
| 5 |
+
- generated_from_trainer
|
| 6 |
+
metrics:
|
| 7 |
+
- rouge
|
| 8 |
+
- bleu
|
| 9 |
+
model-index:
|
| 10 |
+
- name: mt5-small_test
|
| 11 |
+
results: []
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 15 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 16 |
+
|
| 17 |
+
# mt5-small_test
|
| 18 |
+
|
| 19 |
+
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset.
|
| 20 |
+
It achieves the following results on the evaluation set:
|
| 21 |
+
- Loss: 0.7284
|
| 22 |
+
- Rouge1: 43.3718
|
| 23 |
+
- Rouge2: 37.5973
|
| 24 |
+
- Rougel: 42.0502
|
| 25 |
+
- Rougelsum: 42.0648
|
| 26 |
+
- Bleu: 32.8345
|
| 27 |
+
- Gen Len: 12.6063
|
| 28 |
+
- Meteor: 0.3949
|
| 29 |
+
- True negatives: 70.2115
|
| 30 |
+
- False negatives: 11.206
|
| 31 |
+
- Cosine Sim: 0.7485
|
| 32 |
+
|
| 33 |
+
## Model description
|
| 34 |
+
|
| 35 |
+
More information needed
|
| 36 |
+
|
| 37 |
+
## Intended uses & limitations
|
| 38 |
+
|
| 39 |
+
More information needed
|
| 40 |
+
|
| 41 |
+
## Training and evaluation data
|
| 42 |
+
|
| 43 |
+
More information needed
|
| 44 |
+
|
| 45 |
+
## Training procedure
|
| 46 |
+
|
| 47 |
+
### Training hyperparameters
|
| 48 |
+
|
| 49 |
+
The following hyperparameters were used during training:
|
| 50 |
+
- learning_rate: 0.001
|
| 51 |
+
- train_batch_size: 16
|
| 52 |
+
- eval_batch_size: 16
|
| 53 |
+
- seed: 9
|
| 54 |
+
- gradient_accumulation_steps: 8
|
| 55 |
+
- total_train_batch_size: 128
|
| 56 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 57 |
+
- lr_scheduler_type: linear
|
| 58 |
+
- num_epochs: 20
|
| 59 |
+
|
| 60 |
+
### Training results
|
| 61 |
+
|
| 62 |
+
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Bleu | Gen Len | Meteor | True negatives | False negatives | Cosine Sim |
|
| 63 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|:-------:|:------:|:--------------:|:---------------:|:----------:|
|
| 64 |
+
| 3.1455 | 1.0 | 175 | 0.9832 | 18.7269 | 15.517 | 18.22 | 18.223 | 7.0634 | 7.6229 | 0.1626 | 74.6828 | 57.1687 | 0.3949 |
|
| 65 |
+
| 1.1623 | 1.99 | 350 | 0.8542 | 38.7603 | 32.7237 | 37.3447 | 37.3752 | 27.4323 | 12.5135 | 0.3487 | 60.0 | 15.942 | 0.6992 |
|
| 66 |
+
| 0.9431 | 2.99 | 525 | 0.8017 | 41.5759 | 35.6108 | 40.2536 | 40.2695 | 30.7994 | 12.8117 | 0.3755 | 61.2689 | 12.3447 | 0.7304 |
|
| 67 |
+
| 0.8119 | 3.98 | 700 | 0.7787 | 43.5881 | 37.4245 | 42.1096 | 42.1248 | 32.9646 | 13.2176 | 0.3947 | 59.1541 | 9.5238 | 0.7582 |
|
| 68 |
+
| 0.7235 | 4.98 | 875 | 0.7477 | 43.4069 | 37.2246 | 41.8444 | 41.8616 | 32.9345 | 13.116 | 0.3946 | 63.0816 | 9.8085 | 0.7561 |
|
| 69 |
+
| 0.6493 | 5.97 | 1050 | 0.7266 | 40.4506 | 35.0072 | 39.1206 | 39.1181 | 29.0601 | 11.748 | 0.3687 | 75.5287 | 17.2101 | 0.7071 |
|
| 70 |
+
| 0.5871 | 6.97 | 1225 | 0.7284 | 43.3718 | 37.5973 | 42.0502 | 42.0648 | 32.8345 | 12.6063 | 0.3949 | 70.2115 | 11.206 | 0.7485 |
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
### Framework versions
|
| 74 |
+
|
| 75 |
+
- Transformers 4.31.0
|
| 76 |
+
- Pytorch 2.0.1+cu118
|
| 77 |
+
- Datasets 2.13.1
|
| 78 |
+
- Tokenizers 0.13.3
|