--- language: - gl licence: - MIT tags: - galician - FLOR - bloom license: mit pipeline_tag: text-generation inference: parameters: top_k: 10 do_sample: True widget: - text: As filloas son example_title: Filloas - text: O neno vivía cerca da example_title: O neno --- # FLOR-1.3B-GL ## Table of Contents
Click to expand - [FLOR-1.3B-GL](#flor-13b-gl) - [Table of Contents](#table-of-contents) - [Model description](#model-description) - [Intended uses and limitations](#intended-uses-and-limitations) - [How to use](#how-to-use) - [Training](#training) - [Tools](#tools) - [Language adaptation and training](#language-adaptation-and-training) - [Training data](#training-data) - [Training hyperparameters](#training-hyperparameters) - [Framework](#framework) - [Evaluation](#evaluation) - [Additional information](#additional-information) - [Contact](#contact) - [Copyright](#copyright) - [License](#license) - [Funding](#funding) - [Citation information](#citation-information)
## Model description **FLOR-1.3B-GL** is a 1.3B-parameter transformer-based causal language model for Galician. It is the result of a continual pretraining of [FLOR-1.3B](https://huggingface.co/projecte-aina/FLOR-1.3B) (based in [BLOOM-1.7B](https://huggingface.co/bigscience/bloom-1b7)) with the galician corpus [CorpusNos](). ## Intended uses and limitations The **FLOR-1.3B-GL** model is ready-to-use only for causal language modeling. It can perform text-generation tasks and be fine-tuned for specific scenarios. ## How to use ```python import torch from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM input_text = "Hoxe fai un bo día. O sol " model_id = "proxectonos/FLOR-1.3B-GL" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id) generator = pipeline( "text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto", ) generation = generator( input_text, do_sample=True, top_k=10, eos_token_id=tokenizer.eos_token_id, ) print(f"Result: {generation[0]['generated_text']}") ``` ## Training ### Tools It was trained using HuggingFace Transformers and Pytorch, using the [Causal Modeling Language script](https://github.com/huggingface/transformers/blob/main/examples/pytorch/language-modeling/run_clm.py) ### Language adaptation and training The language adaptation technique used to train FLOR-1.3B-GL is based in the used to train FLOR-1.3B, which is explanied by their authors in this [Medium Post](https://medium.com/@mpamies247/flor-6-3b-a-chinchilla-compliant-model-for-catalan-spanish-and-english-7cdb389a9aac). In summary, we proceeded as follows: 1) We trained our own BPE tokenizer for galician and replaced the original FLOR-1.3B tokenizer and vocabulary with it. 2) The embeddings corresponding to tokens that are present in both the original and the target vocabulary (matching tokens) were used for initialization. 3) The embeddings from tokens not present in FLOR-1.3-GL's original vocabulary were initialized as the average of all embeddings. 4) The model was initialized with the weights from FLOR-1.3B and with our adapted tokenizer (step 1) and embeddings (steps 2-3). 5) The model was then trained on a galician corpus. ### Training data CorpusNos (describir) Citar paper? Zenodo? ### Training hyperparameters - seed: 42 - num_devices: 1 - train_batch_size: 2 - eval_batch_size: 2 - gradient_acummulation: 4 - optimizer: AdamW - betas: (0.9,0.999) - epsilon: 1e-08 - weight_decay_rate: 0.1 - scheduler: "Linear" - learning_rate: 5e-05 - num_epochs: 1.2 ### Framework The traininf was conducted in the Galicia Supercomputing Center ([CESGA](https://www.cesga.es/en/home-2/)), using 1 node with 5 GPUs NVIDIA A100. ## Evaluation Human evaluation? Include automatic metrics? (bertscore, perplexity) ## Additional information ### Contact ### Copyright ### License MIT License Copyright (c) 2024 Proxecto Nós Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ### Funding This research was funded by “The Nós project: Galician in the society and economy of Artificial Intelligence”, resulting from the agreement 2021-CP080 between the Xunta de Galicia and the University of Santiago de Compostela, and thanks to the Investigo program, within the National Recovery, Transformation and Resilience Plan, within the framework of the European Recovery Fund (NextGenerationEU). ## Citation information If you use this model, please cite as follows: AUTHORS URL: https://huggingface.co/proxectonos/FLOR-1.3B-GL