--- language: - ca license: apache-2.0 tags: - "catalan" - "textual entailment" - "teca" - "CaText" - "Catalan Textual Corpus" datasets: - "projecte-aina/teca" metrics: - "accuracy" model-index: - name: roberta-base-ca-v2-cased-te results: - task: type: text-classification # Required. Example: automatic-speech-recognition dataset: type: projecte-aina/teca name: TECA metrics: - name: Accuracy type: accuracy value: 0.8314 widget: - text: "M'agrades. T'estimo." - text: "M'agrada el sol i la calor. A la Garrotxa plou molt." - text: "El llibre va caure per la finestra. El llibre va sortir volant." - text: "El meu aniversari és el 23 de maig. Faré anys a finals de maig." --- # Catalan BERTa-v2 (roberta-base-ca-v2) finetuned for Textual Entailment. ## Table of Contents - [Model Description](#model-description) - [Intended Uses and Limitations](#intended-uses-and-limitations) - [How to Use](#how-to-use) - [Training](#training) - [Training Data](#training-data) - [Training Procedure](#training-procedure) - [Evaluation](#evaluation) - [Variable and Metrics](#variable-and-metrics) - [Evaluation Results](#evaluation-results) - [Licensing Information](#licensing-information) - [Citation Information](#citation-information) - [Funding](#funding) - [Contributions](#contributions) - [Disclaimer](#disclaimer) ## Model description The **roberta-base-ca-v2-cased-te** is a Textual Entailment (TE) model for the Catalan language fine-tuned from the [roberta-base-ca-v2](https://huggingface.co/projecte-aina/roberta-base-ca-v2) model, a [RoBERTa](https://arxiv.org/abs/1907.11692) base model pre-trained on a medium-size corpus collected from publicly available corpora and crawlers (check the roberta-base-ca-v2 model card for more details). ## Intended Uses and Limitations **roberta-base-ca-v2-cased-te** model can be used to recognize Textual Entailment (TE). The model is limited by its training dataset and may not generalize well for all use cases. ## How to Use Here is how to use this model: ```python from transformers import pipeline from pprint import pprint nlp = pipeline("text-classification", model="projecte-aina/roberta-base-ca-v2-cased-te") example = "M'agrada el sol i la calor. A la Garrotxa plou molt." te_results = nlp(example) pprint(te_results) ``` ## Training ### Training data We used the TE dataset in Catalan called [TE-ca](https://huggingface.co/datasets/projecte-aina/teca) for training and evaluation. ### Training Procedure The model was trained with a batch size of 16 and a learning rate of 5e-5 for 5 epochs. We then selected the best checkpoint using the downstream task metric in the corresponding development set and then evaluated it on the test set. ## Evaluation ### Variable and Metrics This model was finetuned maximizing accuracy. ## Evaluation results We evaluated the roberta-base-ca-cased-te on the TE-ca test set against standard multilingual and monolingual baselines: | Model | TE-ca (Accuracy) | | ------------|:----| | roberta-base-ca-v2-cased-te | **83.14** | | BERTa | 79.26 | | mBERT | 74.63 | | XLM-RoBERTa | 33.30 | For more details, check the fine-tuning and evaluation scripts in the official [GitHub repository](https://github.com/projecte-aina/club). ## Licensing Information [Apache License, Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) ## Citation Information If you use any of these resources (datasets or models) in your work, please cite our latest paper: ```bibtex @inproceedings{armengol-estape-etal-2021-multilingual, title = "Are Multilingual Models the Best Choice for Moderately Under-resourced Languages? {A} Comprehensive Assessment for {C}atalan", author = "Armengol-Estap{\'e}, Jordi and Carrino, Casimiro Pio and Rodriguez-Penagos, Carlos and de Gibert Bonet, Ona and Armentano-Oller, Carme and Gonzalez-Agirre, Aitor and Melero, Maite and Villegas, Marta", booktitle = "Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021", month = aug, year = "2021", address = "Online", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2021.findings-acl.437", doi = "10.18653/v1/2021.findings-acl.437", pages = "4933--4946", } ``` ## Funding This work was funded by the [Departament de la Vicepresidència i de Polítiques Digitals i Territori de la Generalitat de Catalunya](https://politiquesdigitals.gencat.cat/ca/inici/index.html#googtrans(ca|en) within the framework of [Projecte AINA](https://politiquesdigitals.gencat.cat/ca/economia/catalonia-ai/aina). ## Contributions [N/A] ## Disclaimer
Click to expand The models published in this repository are intended for a generalist purpose and are available to third parties. These models may have bias and/or any other undesirable distortions. When third parties, deploy or provide systems and/or services to other parties using any of these models (or using systems based on these models) or become users of the models, they should note that it is their responsibility to mitigate the risks arising from their use and, in any event, to comply with applicable regulations, including regulations regarding the use of Artificial Intelligence. In no event shall the owner and creator of the models (BSC – Barcelona Supercomputing Center) be liable for any results arising from the use made by third parties of these models.