--- license: creativeml-openrail-m language: - en - de - fr - it - pt - hi - es - th base_model: - prithivMLmods/Triangulum-10B pipeline_tag: text-generation library_name: transformers tags: - triangulum_10b - sft - chain_of_thought - ollama - text-generation-inference - llama_for_causal_lm --- ![Triangulum-10b.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/By0OJ1lMvP5ZvVvfEGvz5.png)
  __           .__                                .__                   
_/  |_ _______ |__|_____     ____    ____   __ __ |  |   __ __   _____  
\   __\\_  __ \|  |\__  \   /    \  / ___\ |  |  \|  |  |  |  \ /     \ 
 |  |   |  | \/|  | / __ \_|   |  \/ /_/  >|  |  /|  |__|  |  /|  Y Y  \
 |__|   |__|   |__|(____  /|___|  /\___  / |____/ |____/|____/ |__|_|  /
                        \/      \//_____/                            \/ 
# **Triangulum 10B: Multilingual Large Language Models (LLMs)** Triangulum 10B is a collection of pretrained and instruction-tuned generative models, designed for multilingual applications. These models are trained using synthetic datasets based on long chains of thought, enabling them to perform complex reasoning tasks effectively. # **Key Features** - **Foundation Model**: Built upon LLaMA's autoregressive language model, leveraging an optimized transformer architecture for enhanced performance. - **Instruction Tuning**: Includes supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF) to align model outputs with human preferences for helpfulness and safety. - **Multilingual Support**: Designed to handle multiple languages, ensuring broad applicability across diverse linguistic contexts. # **Training Approach** 1. **Synthetic Datasets**: Utilizes long chain-of-thought synthetic data to enhance reasoning capabilities. 2. **Supervised Fine-Tuning (SFT)**: Aligns the model to specific tasks through curated datasets. 3. **Reinforcement Learning with Human Feedback (RLHF)**: Ensures the model adheres to human values and safety guidelines through iterative training processes. # **How to use with transformers** Starting with `transformers >= 4.43.0` onward, you can run conversational inference using the Transformers `pipeline` abstraction or by leveraging the Auto classes with the `generate()` function. Make sure to update your transformers installation via `pip install --upgrade transformers`. ```python import torch from transformers import pipeline model_id = "prithivMLmods/Triangulum-10B" pipe = pipeline( "text-generation", model=model_id, torch_dtype=torch.bfloat16, device_map="auto", ) messages = [ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"}, {"role": "user", "content": "Who are you?"}, ] outputs = pipe( messages, max_new_tokens=256, ) print(outputs[0]["generated_text"][-1]) ``` # **Use Cases** - Multilingual content generation - Question answering and dialogue systems - Text summarization and analysis - Translation and localization tasks # **Technical Details** Triangulum 10B employs a state-of-the-art autoregressive architecture inspired by LLaMA. The optimized transformer framework ensures both efficiency and scalability, making it suitable for a variety of use cases.