--- tags: - text-to-image - stable-diffusion - lora - diffusers - template:sd-lora widget: - text: 'A black ford mustang parked in the parking lot, in the style of futurism influence, uhd image, furaffinity, focus, street photography, thin steel forms, 32k uhd --ar 2:3 --v 5' output: url: images/qqq.png - text: 'Ferrari car f3 458 tt, in the style of liam wong, fujifilm x-t4, multiple exposure, tsubasa nakai, uhd image, pinturicchio, crimson --ar 16:9 --v 5.2' output: url: images/www.png - text: 'Bugatti Veyron in cobalt blue metallic, high detail, octane render, 8k' output: url: images/eee.png base_model: black-forest-labs/FLUX.1-dev instance_prompt: Car license: creativeml-openrail-m --- # Car-Flux-Dev-LoRA **The model is still in the training phase. This is not the final version and may contain artifacts and perform poorly in some cases.** ## Model description **prithivMLmods/Canopus-Car-Flux-Dev-LoRA** Image Processing Parameters | Parameter | Value | Parameter | Value | |---------------------------|--------|---------------------------|--------| | LR Scheduler | constant | Noise Offset | 0.03 | | Optimizer | AdamW8bit | Multires Noise Discount | 0.1 | | Network Dim | 64 | Multires Noise Iterations | 10 | | Network Alpha | 32 | Repeat & Steps | 22 & 1.5K+ | | Epoch | 15 | Save Every N Epochs | 1 | Labeling: florence2-en(natural language & English) Total Images Used for Training : 40+ [ Hi-RES ] & More ............... ## Trigger prompts A black ford mustang parked in the parking lot, in the style of futurism influence, uhd image, furaffinity, focus, street photography, thin steel forms, 32k uhd --ar 2:3 --v 5 Ferrari car f3 458 tt, in the style of liam wong, fujifilm x-t4, multiple exposure, tsubasa nakai, uhd image, pinturicchio, crimson --ar 16:9 --v 5.2 Bugatti Veyron in cobalt blue metallic, high detail, octane render, 8k | Parameter | Value | |-----------------|---------------------------------------------------------------------------------------| | Prompt | Bugatti Veyron in cobalt blue metallic, high detail, octane render, 8k | | Sampler | euler | ## Setting Up ``` import torch from pipelines import DiffusionPipeline base_model = "black-forest-labs/FLUX.1-dev" pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16) lora_repo = "prithivMLmods/Canopus-Car-Flux-Dev-LoRA" trigger_word = "car" # Leave trigger_word blank if not used. pipe.load_lora_weights(lora_repo) device = torch.device("cuda") pipe.to(device) ``` ## Trigger words You should use `Car` to trigger the image generation. ## Download model Weights for this model are available in Safetensors format. [Download](/prithivMLmods/Canopus-Car-Flux-Dev-LoRA/tree/main) them in the Files & versions tab.