--- license: mit base_model: microsoft/mdeberta-v3-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: temp_assamese results: [] --- # temp_assamese This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8132 - Accuracy: 0.8287 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:-----:|:---------------:|:--------:| | 2.4466 | 0.0931 | 5000 | 1.5004 | 0.7075 | | 1.4994 | 0.1862 | 10000 | 1.2256 | 0.7532 | | 1.2888 | 0.2793 | 15000 | 1.0994 | 0.7766 | | 1.1746 | 0.3723 | 20000 | 1.0090 | 0.7915 | | 1.0994 | 0.4654 | 25000 | 0.9514 | 0.8021 | | 1.0379 | 0.5585 | 30000 | 0.9029 | 0.8115 | | 0.9956 | 0.6516 | 35000 | 0.8695 | 0.8174 | | 0.9647 | 0.7447 | 40000 | 0.8462 | 0.8216 | | 0.9351 | 0.8378 | 45000 | 0.8274 | 0.8258 | | 0.9194 | 0.9309 | 50000 | 0.8120 | 0.8286 | ### Framework versions - Transformers 4.43.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1