# Copyright 2024 Big Vision Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=line-too-long r"""Implements RSVQA-LR dataset in TFDS. Remote sensing visual question answering task, using low-resolution satellite (Sentinel-2) RGB channels data at 10m resolution per pixel. It's small dataset at source (200M), so simple to run locally. First, download and unzip the dataset from https://zenodo.org/records/6344334 and place it in /tmp/data/rsvqa_lr. Then, run conversion locally (make sure to install tensorflow-datasets for the `tfds` util): cd third_party/py/big_vision/datasets env TFDS_DATA_DIR=/tmp/tfds tfds build --datasets=rsvqa_lr Example to load: import tensorflow_datasets as tfds dataset = tfds.load('rsvqa_lr', split='train', data_dir='/tmp/tfds') Dataset splits: train: 57223 examples/questions val: 10005 examples/questions test: 10004 examples/questions And the same splits are available excluding numeric questions: train_nonum: 39441 examples/questions val_nonum: 6782 examples/questions test_nonum: 6782 examples/questions Note: due to image duplication with each question, the dataset size is significatnly increased by the number of questions per image. Recommended training splits: train: train minitrain: train[:5%] eval: val full_train: train+val test: test Image sizes: 256x256 Number of answers per question: 1 Question types distribution in train split: - Comparison(comp): 39.4% - Count (count): 29.9% (integers, binned at evaluation into {0, 1-10, 11-100, 101-1000, >10000}) - Presence (presence): 29.7% - Rural/Urban (rural_urban): 1% """ import io import json import os import numpy as np import tensorflow_datasets as tfds _DESCRIPTION = """RSVQA-LR dataset.""" # pylint: disable=line-too-long _CITATION = """ @article{Lobry_2020, title={RSVQA: Visual Question Answering for Remote Sensing Data}, volume={58}, ISSN={1558-0644}, url={http://dx.doi.org/10.1109/TGRS.2020.2988782}, DOI={10.1109/tgrs.2020.2988782}, number={12}, journal={IEEE Transactions on Geoscience and Remote Sensing}, publisher={Institute of Electrical and Electronics Engineers (IEEE)}, author={Lobry, Sylvain and Marcos, Diego and Murray, Jesse and Tuia, Devis}, year={2020}, month=dec, pages={8555–8566} } """ # pylint: enable=line-too-long # When running locally (recommended), copy files as above an use these: PATH = '/tmp/data/rsvqa_lr/' class RsvqaLrConfig(tfds.core.BuilderConfig): """Config to specify each variant.""" def __init__(self, nonum, **kwargs): name = 'nonum' if nonum else 'all' super(RsvqaLrConfig, self).__init__(name=name, **kwargs) self.nonum = nonum class RsvqaLr(tfds.core.GeneratorBasedBuilder): """DatasetBuilder for RSVQA-LR dataset.""" VERSION = tfds.core.Version('1.0.2') RELEASE_NOTES = { '1.0.0': 'First release.', '1.0.1': 'Rename binned values.', '1.0.2': 'Removed explicit png image encoding.', } BUILDER_CONFIGS = [ RsvqaLrConfig(nonum=False), RsvqaLrConfig(nonum=True), ] def _info(self): """Returns the metadata.""" return tfds.core.DatasetInfo( builder=self, description=_DESCRIPTION, features=tfds.features.FeaturesDict({ 'question_id': tfds.features.Scalar(np.int32), 'filename': tfds.features.Text(), 'image': tfds.features.Image(), 'question': tfds.features.Text(), 'question_type': tfds.features.Text(), 'answers': tfds.features.Sequence(tfds.features.Text()), 'raw_answers': tfds.features.Sequence(tfds.features.Text()), }), supervised_keys=None, homepage='https://rsvqa.sylvainlobry.com/', citation=_CITATION, ) def _split_generators(self, dl_manager: tfds.download.DownloadManager): """Returns SplitGenerators.""" return { split: self._generate_examples(split) for split in ('train', 'val', 'test') } def _generate_examples(self, split): """Yields (key, example) tuples.""" questions_path = os.path.join(PATH + f'LR_split_{split}_questions.json') answers_path = os.path.join(PATH + f'LR_split_{split}_answers.json') images_path = os.path.join(PATH + 'Images_LR') with open(questions_path, 'r') as f: questions = json.loads(f.read())['questions'] with open(answers_path, 'r') as f: answers = json.loads(f.read())['answers'] for q, a in zip(questions, answers): assert q['active'] == a['active'] if not q['active']: continue if self.builder_config.nonum and q['type'] == 'count': continue assert q['answers_ids'] == [a['id']] assert q['id'] == a['question_id'] filename = f'{q["img_id"]}.tif' img = read_tif(os.path.join(images_path, filename)) yield q['id'], { 'question_id': q['id'], 'filename': filename, 'image': img, 'question': q['question'], 'question_type': q['type'], 'answers': [bin_answer(a['answer'], q['type'])], 'raw_answers': [a['answer']], } def bin_answer(answer, question_type): """Bins answers into expected ranges.""" if question_type == 'count': count = int(answer) if count == 0: return '0' elif count <= 10: return 'between 1 and 10' elif count <= 100: return 'between 11 and 100' elif count <= 1000: return 'between 101 and 1000' else: return 'more than 1000' return answer def read_tif(path): with open(path, 'rb') as f: img = tfds.core.lazy_imports.tifffile.imread(io.BytesIO(f.read())) return img.astype(np.uint8)