# Copyright 2024 Big Vision Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=line-too-long r"""Train VAE for GIVT-based UViM COCO panoptic task. """ import big_vision.configs.common as bvcc import ml_collections as mlc def get_config(arg='res=512,patch_size=16'): """Config for training label compression on COCO-panoptic.""" arg = bvcc.parse_arg(arg, res=512, patch_size=16, runlocal=False, singlehost=False) config = mlc.ConfigDict() config.input = {} config.input.data = dict(name='coco/2017_panoptic', split='train[4096:]') config.input.batch_size = 1024 config.input.shuffle_buffer_size = 25_000 config.total_epochs = 500 config.input.pp = ( f'decode|coco_panoptic|concat(["semantics","instances"], "labels")|' f'randu("fliplr")|det_fliplr(key="image")|det_fliplr(key="labels")|' f'inception_box|crop_box(key="image")|crop_box(key="labels")|' f'resize({arg.res})|resize({arg.res},key="labels",method="nearest")|' f'value_range(-1, 1)|make_canonical|copy("labels","image")|keep("image")' ) pp_eval = ( f'decode|coco_panoptic|concat(["semantics","instances"], "labels")|' f'resize({arg.res})|resize({arg.res},key="labels",method="nearest")|' f'value_range(-1, 1)|make_canonical|copy("labels","image")|keep("image", "image/id")' ) config.log_training_steps = 50 config.ckpt_steps = 1000 config.keep_ckpt_steps = None # Model section config.model_name = 'proj.givt.vit' config.model = mlc.ConfigDict() config.model.input_size = (arg.res, arg.res) config.model.patch_size = (arg.patch_size, arg.patch_size) config.model.code_len = 256 config.model.width = 768 config.model.enc_depth = 6 config.model.dec_depth = 12 config.model.mlp_dim = 3072 config.model.num_heads = 12 config.model.codeword_dim = 32 config.model.code_dropout = 'none' config.model.bottleneck_resize = True config.model.scan = True config.model.remat_policy = 'nothing_saveable' config.rec_loss_fn = 'xent' # xent, l2 # values: (index in source image, number of classes) config.model.inout_specs = { 'semantics': (0, 133 + 1), # +1 for void label 'instances': (1, 100), # COCO: actually 98 train/78 validation. } config.beta = 2.5e-4 config.beta_percept = 0.0 config.optax_name = 'scale_by_adam' config.optax = dict(b2=0.95) config.grad_clip_norm = 1.0 # FSDP training by default config.sharding_strategy = [('.*', 'fsdp(axis="data")')] config.sharding_rules = [('act_batch', ('data',))] config.lr = 1e-3 config.wd = 1e-4 config.schedule = dict(decay_type='cosine', warmup_steps=0.1) config.grad_clip_norm = 1.0 # Evaluation section config.evals = {} config.evals.val = mlc.ConfigDict() config.evals.val.type = 'mean' config.evals.val.pred = 'validation' config.evals.val.data = {**config.input.data} config.evals.val.data.split = 'train[:4096]' config.evals.val.pp_fn = pp_eval config.evals.val.log_steps = 250 base = { 'type': 'proj.givt.coco_panoptic', 'pp_fn': pp_eval, 'log_steps': 5_000, 'pred': 'predict_panoptic', # Filters objects that occupy less than 0.03^2 fraction of all pixels. # 'pred_kw': {'min_fraction': 0.03 ** 2}, } config.evals.coco_panoptic_train = dict(**base, data={'split': 'train[4096:8192]'}) config.evals.coco_panoptic_holdout = dict(**base, data={'split': 'train[:4096]'}) config.evals.coco_panoptic = dict(**base, data={'split': 'validation'}) config.evals.save_pred = dict(type='proj.givt.save_predictions') config.evals.save_pred.pp_fn = pp_eval config.evals.save_pred.log_steps = 100_000 config.evals.save_pred.pred = 'predict_panoptic' config.evals.save_pred.data = {**config.input.data} config.evals.save_pred.data.split = 'validation[:1024]' config.evals.save_pred.outfile = 'inference.npz' config.seed = 0 if arg.singlehost: config.input.batch_size = 128 config.num_epochs = 100 elif arg.runlocal: config.input.batch_size = 16 config.input.shuffle_buffer_size = 10 config.log_training_steps = 5 config.model.enc_depth = 1 config.model.dec_depth = 1 return config