# Copyright 2024 Big Vision Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: disable=line-too-long r"""Distill flexible-seqlen ViT on ImageNet-21k from (internal link) B/8. This config is for reference, we never ran it on public infrastructure. big_vision.trainers.proj.flexi.distill \ --config big_vision/configs/proj/flexivit/i21k_distill.py \ --workdir gs://[your_bucket]/big_vision/`date '+%m-%d_%H%M'` \ --config.total_epochs 90 """ import big_vision.configs.common as bvcc def get_config(arg=None): """Config for training.""" # 240px is nice because it's divisible by # [240, 120, 80, 60, 48, 40, 30, 24, 20, 16, 15, 12, 10, 8, 6, 5, 4, 3, 2, 1] c = bvcc.parse_arg(arg, runlocal=False, res=240) c.seed = 0 c.total_epochs = 90 c.num_classes = 21843 c.init_head_bias = -10.0 c.loss = 'sigmoid_xent' c.input = dict() c.input.data = dict( name='imagenet21k', split='full[51200:]', ) c.input.batch_size = 4096 if not c.runlocal else 8 c.input.shuffle_buffer_size = 250_000 if not c.runlocal else 25 pp_label_i21k = f'|onehot({c.num_classes})|keep("image", "prof", "labels")' pp_label_i1k = '|onehot(1000, key="{lbl}", key_result="labels")|keep("image", "prof", "labels")' c.input.pp = ( f'decode|inception_crop|flip_lr|copy("image", "prof")' f'|resize({c.res})|value_range(-1, 1)' f'|resize(224, outkey="prof")|value_range(-1, 1, key="prof")' + pp_label_i21k ) pp_eval_both = ( 'decode|copy("image", "prof")|' f'|resize_small({c.res//7*8})|central_crop({c.res})|value_range(-1, 1)' f'|resize_small(256, key="prof")|central_crop(224, key="prof")|value_range(-1, 1, key="prof")|' ) pp_eval_student = ( f'decode|resize({c.res//7*8})|central_crop({c.res})|value_range(-1, 1)' ) pp_eval_prof = ( 'decode|resize(256)|central_crop(224)|value_range(-1, 1, outkey="prof")' ) # Aggressive pre-fetching because our models here are small, so we not only # can afford it, but we also need it for the smallest models to not be # bottle-necked by the input pipeline. Play around with it for -L models tho. c.input.prefetch = 8 c.prefetch_to_device = 4 c.log_training_steps = 50 c.ckpt_steps = 1000 # Model section init = 'howto-i21k-B/8' c.student_name = 'proj.flexi.vit' c.student_init = init c.student = dict(variant='B', pool_type='tok', patch_size=(8, 8)) c.teachers = ['prof'] # You could even add multiple. c.prof_name = 'vit' c.prof_init = init c.prof = dict(variant='B/8', pool_type='tok') # Define the model parameters which are flexible: c.flexi = dict() c.flexi.seqhw = dict( # The settings to sample from. Corresponding patch-sizes at 240px: # 48, 40, 30, 24, 20, 16, 15, 12, 10, 8 v=(5, 6, 8, 10, 12, 15, 16, 20, 24, 30), # The probabilities/weights of them. Default uniform. p=(1, 1, 1, 1, 1, 1, 1, 1, 1, 1), ) # Distillation settings c.distance = 'kl' c.distance_kw = dict(t=1.0) # Optimizer section c.optax_name = 'scale_by_adam' c.optax = dict(mu_dtype='bfloat16') c.grad_clip_norm = 1.0 c.lr = 1e-4 c.wd = 1e-5 c.schedule = dict(warmup_steps=5000, decay_type='cosine') c.mixup = dict(p=1.0) #### # Preparing for evals c.evals = {} def mksplit(split): if c.runlocal: return split.split('[')[0] + '[:16]' return split #### # Student evals # Evaluations on i21k itself. def eval_i21k(s, split): return dict( type='classification', pred=f'student_seqhw={s}', data={**c.input.data, 'split': mksplit(split)}, pp_fn=pp_eval_student + pp_label_i21k, loss_name=c.loss, log_steps=5000, # Very fast O(seconds) so it's fine to run it often. ) for s in c.flexi.seqhw.v: c.evals[f'student_test{s:02d}'] = eval_i21k(s, 'full[:25_600]') c.evals[f'student_val{s:02d}'] = eval_i21k(s, 'full[25_600:51_200]') c.evals[f'student_minitrain{s:02d}'] = eval_i21k(s, 'full[51_200:76_800]') # Evaluations on ImageNet1k variants by label-mapping. def eval_i1k(s, dataset, split, lblmap): return dict( type='classification_with_labelmap', pred=f'student_seqhw={s}', data=dict(name=dataset, split=mksplit(split)), pp_fn=pp_eval_student + pp_label_i1k.format(lbl='label'), loss_name=c.loss, log_steps=5000, # Very fast O(seconds) so it's fine to run it often. label_mapping=lblmap, ) for s in c.flexi.seqhw.v: c.evals[f'student_i1k_val{s:02d}'] = eval_i1k(s, 'imagenet2012', 'validation', 'i1k_i21k') c.evals[f'student_i1k_v2{s:02d}'] = eval_i1k(s, 'imagenet_v2', 'test', 'i1k_i21k') c.evals[f'student_i1k_a{s:02d}'] = eval_i1k(s, 'imagenet_a', 'test', 'i1ka_i21k') c.evals[f'student_i1k_r{s:02d}'] = eval_i1k(s, 'imagenet_r', 'test', 'i1kr_i21k') c.evals[f'student_i1k_real{s:02d}'] = eval_i1k(s, 'imagenet2012_real', 'validation', 'i1k_i21k') c.evals[f'student_i1k_real{s:02d}'].pp_fn = pp_eval_student + pp_label_i1k.format(lbl='real_label') # TODO: add objectnet. #### # Teacher evals # Evaluations on i21k itself. def eval_i21k_t(split): return dict( type='classification', pred='prof', data={**c.input.data, 'split': mksplit(split)}, pp_fn=pp_eval_prof + pp_label_i21k, loss_name=c.loss, log_steps=5000, # Very fast O(seconds) so it's fine to run it often. ) c.evals.teacher_test = eval_i21k_t('full[:25_600]') c.evals.teacher_val = eval_i21k_t('full[25_600:51_200]') c.evals.teacher_minitrain = eval_i21k_t('full[51_200:76_800]') # Evaluations on ImageNet1k variants by label-mapping. def eval_i1k_t(dataset, split, lblmap): return dict( type='classification_with_labelmap', pred='prof', data=dict(name=dataset, split=mksplit(split)), pp_fn=pp_eval_prof + pp_label_i1k.format(lbl='label'), loss_name=c.loss, log_percent=0.5, # Teacher is fixed, so eval just for plots. label_mapping=lblmap, ) c.evals.teacher_i1k_val = eval_i1k_t('imagenet2012', 'validation', 'i1k_i21k') c.evals.teacher_i1k_v2 = eval_i1k_t('imagenet_v2', 'test', 'i1k_i21k') c.evals.teacher_i1k_a = eval_i1k_t('imagenet_a', 'test', 'i1ka_i21k') c.evals.teacher_i1k_r = eval_i1k_t('imagenet_r', 'test', 'i1kr_i21k') c.evals.teacher_i1k_real = eval_i1k_t('imagenet2012_real', 'validation', 'i1k_i21k') c.evals.teacher_i1k_real.pp_fn = pp_eval_prof + pp_label_i1k.format(lbl='real_label') # TODO: add objectnet. #### # Combined evals def get_dist(split, s): return dict( type='proj.distill.distance', pred=f'student_seqhw={s}_prof', data=dict(name='imagenet2012', split=mksplit(split)), pp_fn=pp_eval_both + '|keep("image", "prof")', log_percent=0.05, distances=({'kind': 'kl'}, {'kind': 'logsoftmax_euclidean'}, {'kind': 'agree', 'k': 1}, {'kind': 'agree', 'k': 5}), ) for s in c.flexi.seqhw.v: c.evals[f'dist_minitrain_{s:02d}'] = get_dist('full[51_200:76_800]', s) c.evals[f'dist_val_{s:02d}'] = get_dist('full[25_600:51_200]', s) # Few-shot evaluators not added for overkill reasons for now. return c