|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""A refactored and simplified ViT. |
|
|
|
However, the names of modules are made to match the old ones for easy loading. |
|
""" |
|
|
|
from typing import Optional, Sequence, Union |
|
|
|
from absl import logging |
|
from big_vision import utils |
|
from big_vision.models import common |
|
import flax |
|
import flax.linen as nn |
|
import flax.training.checkpoints |
|
import jax |
|
import jax.numpy as jnp |
|
import numpy as np |
|
import scipy.ndimage |
|
|
|
|
|
def posemb_sincos_2d(h, w, width, temperature=10_000., dtype=jnp.float32): |
|
"""Follows the MoCo v3 logic.""" |
|
y, x = jnp.mgrid[:h, :w] |
|
|
|
assert width % 4 == 0, "Width must be mult of 4 for sincos posemb" |
|
omega = jnp.arange(width // 4) / (width // 4 - 1) |
|
omega = 1. / (temperature**omega) |
|
y = jnp.einsum("m,d->md", y.flatten(), omega) |
|
x = jnp.einsum("m,d->md", x.flatten(), omega) |
|
pe = jnp.concatenate([jnp.sin(x), jnp.cos(x), jnp.sin(y), jnp.cos(y)], axis=1) |
|
return jnp.asarray(pe, dtype)[None, :, :] |
|
|
|
|
|
def get_posemb(self, typ, seqshape, width, name, dtype=jnp.float32): |
|
if typ == "learn": |
|
return self.param(name, nn.initializers.normal(stddev=1/np.sqrt(width)), |
|
(1, np.prod(seqshape), width), dtype) |
|
elif typ == "sincos2d": |
|
return posemb_sincos_2d(*seqshape, width, dtype=dtype) |
|
else: |
|
raise ValueError(f"Unknown posemb type: {typ}") |
|
|
|
|
|
class MlpBlock(nn.Module): |
|
"""Transformer MLP / feed-forward block.""" |
|
mlp_dim: Optional[int] = None |
|
dropout: float = 0.0 |
|
dtype_mm: str = "float32" |
|
|
|
@nn.compact |
|
def __call__(self, x, deterministic=True): |
|
"""Applies Transformer MlpBlock module.""" |
|
inits = dict( |
|
kernel_init=nn.initializers.xavier_uniform(), |
|
bias_init=nn.initializers.normal(stddev=1e-6), |
|
) |
|
|
|
n, l, d = x.shape |
|
x = nn.Dense(self.mlp_dim or 4 * d, dtype=self.dtype_mm, **inits)(x) |
|
x = nn.gelu(x) |
|
x = nn.Dropout(rate=self.dropout)(x, deterministic) |
|
x = nn.Dense(d, dtype=self.dtype_mm, **inits)(x) |
|
return x |
|
|
|
|
|
class Encoder1DBlock(nn.Module): |
|
"""Single transformer encoder block (MHSA + MLP).""" |
|
mlp_dim: Optional[int] = None |
|
num_heads: int = 12 |
|
dropout: float = 0.0 |
|
dtype_mm: str = "float32" |
|
|
|
@nn.compact |
|
def __call__(self, x, deterministic=True): |
|
out = {} |
|
x = nn.with_logical_constraint(x, ("act_batch", "act_len", "act_emb")) |
|
y = nn.LayerNorm()(x) |
|
y = out["sa"] = nn.MultiHeadDotProductAttention( |
|
num_heads=self.num_heads, |
|
kernel_init=nn.initializers.xavier_uniform(), |
|
deterministic=deterministic, |
|
dtype=self.dtype_mm, |
|
)(y, y) |
|
y = nn.with_logical_constraint(y, ("act_batch", "act_len", "act_emb")) |
|
y = nn.Dropout(rate=self.dropout)(y, deterministic) |
|
x = out["+sa"] = x + y |
|
|
|
y = nn.LayerNorm()(x) |
|
y = out["mlp"] = MlpBlock( |
|
mlp_dim=self.mlp_dim, dropout=self.dropout, |
|
dtype_mm=self.dtype_mm, |
|
)(y, deterministic) |
|
y = nn.with_logical_constraint(y, ("act_batch", "act_len", "act_emb")) |
|
y = nn.Dropout(rate=self.dropout)(y, deterministic) |
|
x = out["+mlp"] = x + y |
|
x = nn.with_logical_constraint(x, ("act_batch", "act_len", "act_emb")) |
|
return x, out |
|
|
|
|
|
class Encoder(nn.Module): |
|
"""Transformer Model Encoder for sequence to sequence translation.""" |
|
depth: int |
|
mlp_dim: Optional[int] = None |
|
num_heads: int = 12 |
|
dropout: float = 0.0 |
|
scan: bool = False |
|
remat_policy: str = "nothing_saveable" |
|
dtype_mm: str = "float32" |
|
|
|
@nn.compact |
|
def __call__(self, x, deterministic=True): |
|
out = {} |
|
|
|
if self.scan: |
|
block = nn.remat( |
|
Encoder1DBlock, |
|
prevent_cse=False, |
|
static_argnums=(2,), |
|
policy=getattr(jax.checkpoint_policies, self.remat_policy, None), |
|
) |
|
x, scan_out = nn.scan( |
|
block, |
|
variable_axes={"params": 0}, |
|
split_rngs={"params": True, "dropout": True}, |
|
in_axes=nn.broadcast, |
|
length=self.depth)( |
|
name="encoderblock", |
|
dtype_mm=self.dtype_mm, |
|
mlp_dim=self.mlp_dim, |
|
num_heads=self.num_heads, |
|
dropout=self.dropout)(x, deterministic) |
|
for lyr in range(self.depth): |
|
out[f"block{lyr:02d}"] = jax.tree.map(lambda o, l=lyr: o[l], scan_out) |
|
else: |
|
|
|
for lyr in range(self.depth): |
|
block_cur = Encoder1DBlock( |
|
name=f"encoderblock_{lyr}", |
|
dtype_mm=self.dtype_mm, |
|
mlp_dim=self.mlp_dim, num_heads=self.num_heads, |
|
dropout=self.dropout) |
|
x, out[f"block{lyr:02d}"] = block_cur(x, deterministic) |
|
out["pre_ln"] = x |
|
|
|
return nn.LayerNorm(name="encoder_norm")(x), out |
|
|
|
|
|
class MAPHead(nn.Module): |
|
"""Multihead Attention Pooling.""" |
|
mlp_dim: Optional[int] = None |
|
num_heads: int = 12 |
|
|
|
@nn.compact |
|
def __call__(self, x): |
|
|
|
n, l, d = x.shape |
|
probe = self.param("probe", nn.initializers.xavier_uniform(), |
|
(1, 1, d), x.dtype) |
|
probe = jnp.tile(probe, [n, 1, 1]) |
|
|
|
x = nn.MultiHeadDotProductAttention( |
|
num_heads=self.num_heads, |
|
kernel_init=nn.initializers.xavier_uniform())(probe, x) |
|
|
|
|
|
y = nn.LayerNorm()(x) |
|
x = x + MlpBlock(mlp_dim=self.mlp_dim)(y) |
|
return x[:, 0] |
|
|
|
|
|
class _Model(nn.Module): |
|
"""ViT model.""" |
|
|
|
num_classes: Optional[int] = None |
|
patch_size: Sequence[int] = (16, 16) |
|
width: int = 768 |
|
depth: int = 12 |
|
mlp_dim: Optional[int] = None |
|
num_heads: int = 12 |
|
posemb: str = "learn" |
|
rep_size: Union[int, bool] = False |
|
dropout: float = 0.0 |
|
pool_type: str = "gap" |
|
head_zeroinit: bool = True |
|
scan: bool = False |
|
|
|
remat_policy: str = "nothing_saveable" |
|
dtype_mm: str = "float32" |
|
|
|
@nn.compact |
|
def __call__(self, image, *, train=False): |
|
out = {} |
|
|
|
image = jnp.asarray(image, self.dtype_mm) |
|
|
|
|
|
x = out["stem"] = nn.Conv( |
|
self.width, self.patch_size, strides=self.patch_size, |
|
padding="VALID", name="embedding", dtype=self.dtype_mm)(image) |
|
|
|
n, h, w, c = x.shape |
|
x = jnp.reshape(x, [n, h * w, c]) |
|
|
|
|
|
x = out["with_posemb"] = x + get_posemb( |
|
self, self.posemb, (h, w), c, "pos_embedding", x.dtype) |
|
|
|
if self.pool_type == "tok": |
|
cls = self.param("cls", nn.initializers.zeros, (1, 1, c), x.dtype) |
|
x = jnp.concatenate([jnp.tile(cls, [n, 1, 1]), x], axis=1) |
|
|
|
n, l, c = x.shape |
|
x = nn.Dropout(rate=self.dropout)(x, not train) |
|
|
|
x, out["encoder"] = Encoder( |
|
depth=self.depth, |
|
mlp_dim=self.mlp_dim, |
|
num_heads=self.num_heads, |
|
dropout=self.dropout, |
|
scan=self.scan, |
|
remat_policy=self.remat_policy, |
|
dtype_mm=self.dtype_mm, |
|
name="Transformer")( |
|
x, deterministic=not train) |
|
encoded = out["encoded"] = x |
|
|
|
if self.pool_type == "map": |
|
x = out["head_input"] = MAPHead( |
|
num_heads=self.num_heads, mlp_dim=self.mlp_dim)(x) |
|
elif self.pool_type == "gap": |
|
x = out["head_input"] = jnp.mean(x, axis=1) |
|
elif self.pool_type == "0": |
|
x = out["head_input"] = x[:, 0] |
|
elif self.pool_type == "tok": |
|
x = out["head_input"] = x[:, 0] |
|
encoded = encoded[:, 1:] |
|
elif self.pool_type == "none": |
|
pass |
|
else: |
|
raise ValueError(f"Unknown pool type: '{self.pool_type}'") |
|
|
|
x_2d = jnp.reshape(encoded, [n, h, w, -1]) |
|
|
|
if self.rep_size: |
|
rep_size = self.width if self.rep_size is True else self.rep_size |
|
hid = nn.Dense(rep_size, name="pre_logits") |
|
|
|
|
|
x_2d = nn.tanh(hid(x_2d)) |
|
x = nn.tanh(hid(x)) |
|
|
|
out["pre_logits_2d"] = x_2d |
|
out["pre_logits"] = x |
|
|
|
if self.num_classes: |
|
kw = {"kernel_init": nn.initializers.zeros} if self.head_zeroinit else {} |
|
head = nn.Dense(self.num_classes, name="head", **kw) |
|
x_2d = out["logits_2d"] = head(x_2d) |
|
x = out["logits"] = head(x) |
|
|
|
return x, out |
|
|
|
|
|
def Model(num_classes=None, *, variant=None, **kw): |
|
"""Factory function, because linen really don't like what I'm doing!""" |
|
return _Model(num_classes, **{**decode_variant(variant), **kw}) |
|
|
|
|
|
def decode_variant(variant): |
|
"""Converts a string like "B" or "B/32" into a params dict.""" |
|
if variant is None: |
|
return {} |
|
|
|
v, patch = variant, {} |
|
if "/" in variant: |
|
v, patch = variant.split("/") |
|
patch = {"patch_size": (int(patch), int(patch))} |
|
|
|
return { |
|
|
|
|
|
"width": {"mu": 32, "Ti": 192, "S": 384, "M": 512, "B": 768, "L": 1024, "So400m": 1152, "H": 1280, "g": 1408, "g-opt": 1536, "G": 1664, "G-opt": 1536, "e": 1792}[v], |
|
"depth": {"mu": 1, "Ti": 12, "S": 12, "M": 12, "B": 12, "L": 24, "So400m": 27, "H": 32, "g": 40, "g-opt": 40, "G": 48, "G-opt": 48, "e": 56}[v], |
|
"mlp_dim": {"mu": 128, "Ti": 768, "S": 1536, "M": 2048, "B": 3072, "L": 4096, "So400m": 4304, "H": 5120, "g": 6144, "g-opt": 6144, "G": 8192, "G-opt": 8192, "e": 15360}[v], |
|
"num_heads": {"mu": 2, "Ti": 3, "S": 6, "M": 8, "B": 12, "L": 16, "So400m": 16, "H": 16, "g": 16, "g-opt": 16, "G": 16, "G-opt": 16, "e": 16}[v], |
|
|
|
**patch |
|
} |
|
|
|
|
|
def resample_posemb(old, new): |
|
"""This function implements "high-res finetuning" for transformer models.""" |
|
|
|
if old.shape == new.shape: |
|
return old |
|
|
|
logging.info("ViT: resize %s to %s", old.shape, new.shape) |
|
gs_old = int(np.sqrt(old.shape[1])) |
|
gs_new = int(np.sqrt(new.shape[1])) |
|
logging.info("ViT: grid-size from %s to %s", gs_old, gs_new) |
|
grid = old.reshape(gs_old, gs_old, -1) |
|
|
|
zoom = (gs_new/gs_old, gs_new/gs_old, 1) |
|
grid = scipy.ndimage.zoom(grid, zoom, order=1) |
|
grid = grid.reshape(1, gs_new*gs_new, -1) |
|
return grid |
|
|
|
|
|
def fix_old_checkpoints(params): |
|
"""Fix small bwd incompat that can't be resolved with names in model def.""" |
|
|
|
params = flax.core.unfreeze( |
|
flax.training.checkpoints.convert_pre_linen(params)) |
|
|
|
|
|
if "posembed_input" in params["Transformer"]: |
|
logging.info("ViT: Loading and fixing VERY old posemb") |
|
posemb = params["Transformer"].pop("posembed_input") |
|
params["pos_embedding"] = posemb["pos_embedding"] |
|
|
|
|
|
if "pos_embedding" in params["Transformer"]: |
|
logging.info("ViT: Loading and fixing old posemb") |
|
params["pos_embedding"] = params["Transformer"].pop("pos_embedding") |
|
|
|
|
|
|
|
|
|
|
|
if "pos_embedding" in params: |
|
pe = params["pos_embedding"] |
|
if int(np.sqrt(pe.shape[1])) ** 2 + 1 == int(pe.shape[1]): |
|
logging.info("ViT: Loading and fixing combined cls+posemb") |
|
pe_cls, params["pos_embedding"] = pe[:, :1], pe[:, 1:] |
|
if "cls" in params: |
|
params["cls"] += pe_cls |
|
|
|
|
|
if "probe" in params: |
|
params["MAPHead_0"] = { |
|
k: params.pop(k) for k in |
|
["probe", "MlpBlock_0", "MultiHeadDotProductAttention_0", "LayerNorm_0"] |
|
} |
|
|
|
return params |
|
|
|
|
|
def pyloop_to_scan(params_pyloop): |
|
"""Converts a python for-loop ViT checkpoint to a lax.scan based one.""" |
|
|
|
|
|
|
|
|
|
params_scan = jax.tree.map(lambda x: x, params_pyloop) |
|
t = params_scan["Transformer"] |
|
|
|
|
|
encoderblocks = {k for k in t if k.startswith("encoderblock_")} |
|
depth = 1 + max({int(k.split("_")[-1]) for k in encoderblocks}) |
|
|
|
def stack(*values): |
|
return np.stack(values) |
|
|
|
|
|
t["encoderblock"] = jax.tree.map( |
|
stack, *[t[f"encoderblock_{lyr}"] for lyr in range(depth)]) |
|
|
|
for lyr in range(depth): |
|
del t[f"encoderblock_{lyr}"] |
|
|
|
return params_scan |
|
|
|
|
|
def scan_to_pyloop(params_scan): |
|
"""Converts a lax.scan ViT checkpoint to a python for-loop based one.""" |
|
|
|
|
|
params_scan = jax.tree.map(lambda x: x, params_scan) |
|
t = params_scan["Transformer"] |
|
|
|
|
|
depth = len(t["encoderblock"]["LayerNorm_0"]["bias"]) |
|
|
|
|
|
for lyr in range(depth): |
|
block = jax.tree.map(lambda x, lyr=lyr: x[lyr], t["encoderblock"]) |
|
t[f"encoderblock_{lyr}"] = block |
|
|
|
del t["encoderblock"] |
|
return params_scan |
|
|
|
|
|
def load(init_params, init_file, model_cfg, dont_load=()): |
|
"""Load init from checkpoint, both old model and this one. +Hi-res posemb.""" |
|
init_file = VANITY_NAMES.get(init_file, init_file) |
|
restored_params = utils.load_params(init_file) |
|
|
|
restored_params = fix_old_checkpoints(restored_params) |
|
|
|
|
|
if (model_cfg.get("scan") and |
|
"encoderblock" not in restored_params["Transformer"]): |
|
restored_params = pyloop_to_scan(restored_params) |
|
if (not model_cfg.get("scan") |
|
and "encoderblock" in restored_params["Transformer"]): |
|
restored_params = scan_to_pyloop(restored_params) |
|
|
|
|
|
restored_params = common.merge_params(restored_params, init_params, dont_load) |
|
|
|
|
|
|
|
if init_params and "pos_embedding" in init_params: |
|
restored_params["pos_embedding"] = resample_posemb( |
|
old=restored_params["pos_embedding"], |
|
new=init_params["pos_embedding"]) |
|
|
|
return restored_params |
|
|
|
|
|
|
|
VANITY_NAMES = { |
|
|
|
|
|
|
|
"howto-i21k-Ti/16": "gs://vit_models/augreg/Ti_16-i21k-300ep-lr_0.001-aug_none-wd_0.03-do_0.0-sd_0.0.npz", |
|
"howto-i21k-S/32": "gs://vit_models/augreg/S_32-i21k-300ep-lr_0.001-aug_none-wd_0.1-do_0.0-sd_0.0.npz", |
|
"howto-i21k-S/16": "gs://vit_models/augreg/S_16-i21k-300ep-lr_0.001-aug_light1-wd_0.03-do_0.0-sd_0.0.npz", |
|
"howto-i21k-B/32": "gs://vit_models/augreg/B_32-i21k-300ep-lr_0.001-aug_light1-wd_0.1-do_0.0-sd_0.0.npz", |
|
"howto-i21k-B/16": "gs://vit_models/augreg/B_16-i21k-300ep-lr_0.001-aug_medium1-wd_0.1-do_0.0-sd_0.0.npz", |
|
"howto-i21k-B/8": "gs://vit_models/augreg/B_8-i21k-300ep-lr_0.001-aug_medium2-wd_0.1-do_0.0-sd_0.0.npz", |
|
"howto-i21k-L/16": "gs://vit_models/augreg/L_16-i21k-300ep-lr_0.001-aug_strong1-wd_0.1-do_0.0-sd_0.0.npz", |
|
|
|
|
|
"i1k-s16-90ep": "gs://big_vision/vit_s16_i1k_90ep.npz", |
|
"i1k-s16-150ep": "gs://big_vision/vit_s16_i1k_150ep.npz", |
|
"i1k-s16-300ep": "gs://big_vision/vit_s16_i1k_300ep.npz", |
|
|
|
|
|
|
|
"deit3_S_224_1k": "gs://big_vision/zoo/deit3/bv_deit_3_small_224_1k.npz", |
|
"deit3_S_224_21k": "gs://big_vision/zoo/deit3/bv_deit_3_small_224_21k.npz", |
|
"deit3_S_384_1k": "gs://big_vision/zoo/deit3/bv_deit_3_small_384_1k.npz", |
|
"deit3_S_384_21k": "gs://big_vision/zoo/deit3/bv_deit_3_small_384_21k.npz", |
|
"deit3_B_224_1k": "gs://big_vision/zoo/deit3/bv_deit_3_base_224_1k.npz", |
|
"deit3_B_224_21k": "gs://big_vision/zoo/deit3/bv_deit_3_base_224_21k.npz", |
|
"deit3_B_384_1k": "gs://big_vision/zoo/deit3/bv_deit_3_base_384_1k.npz", |
|
"deit3_B_384_21k": "gs://big_vision/zoo/deit3/bv_deit_3_base_384_21k.npz", |
|
"deit3_L_224_1k": "gs://big_vision/zoo/deit3/bv_deit_3_large_224_1k.npz", |
|
"deit3_L_224_21k": "gs://big_vision/zoo/deit3/bv_deit_3_large_224_21k.npz", |
|
"deit3_L_384_1k": "gs://big_vision/zoo/deit3/bv_deit_3_large_384_1k.npz", |
|
"deit3_L_384_21k": "gs://big_vision/zoo/deit3/bv_deit_3_large_384_21k.npz", |
|
|
|
|
|
"SigLIP B/16 224": "gs://big_vision/siglip/webli_en_b16_224_63724782.npz:img", |
|
"SigLIP B/16 256": "gs://big_vision/siglip/webli_en_b16_256_60500360.npz:img", |
|
"SigLIP B/16 384": "gs://big_vision/siglip/webli_en_b16_384_68578854.npz:img", |
|
"SigLIP B/16 512": "gs://big_vision/siglip/webli_en_b16_512_68580893.npz:img", |
|
"SigLIP L/16 256": "gs://big_vision/siglip/webli_en_l16_256_60552751.npz:img", |
|
"SigLIP L/16 384": "gs://big_vision/siglip/webli_en_l16_384_63634585.npz:img", |
|
"SigLIP So400m/14 224": "gs://big_vision/siglip/webli_en_so400m_224_57633886.npz:img", |
|
"SigLIP So400m/14 384": "gs://big_vision/siglip/webli_en_so400m_384_58765454.npz:img", |
|
"SigLIP B/16-i18n 256": "gs://big_vision/siglip/webli_i18n_b16_256_66117334.npz:img", |
|
|
|
} |
|
|