PaliOpenVocabSegmentation / big_vision /configs /proj /uvim /train_coco_panoptic_pretrained.py
pranavSIT's picture
added pali inference
74e8f2f
# Copyright 2022 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=line-too-long
r"""A config for training a UViM stage II model for the panoptic task.
This config is expected to reproduce the paper's result and achieve
approximately 43.7 PQ points on the COCO holdout data.
We also provide a low-resource variant of this config, which can be enabled
by adding `:singlehost` postfix to the config name. This one is expected to
achieve 39.4 PQ points on the COCO holdout data.
"""
import big_vision.configs.common as bvcc
from ml_collections import ConfigDict
VTT_MODELS = {
'base': dict(num_layers=12, num_heads=12, mlp_dim=3072, emb_dim=768),
'large': dict(num_layers=24, num_heads=16, mlp_dim=4096, emb_dim=1024),
}
VQVAE_MODELS = {
'base': dict(enc_depth=6, dec_depth=12, num_heads=12, mlp_dim=3072, width=768),
}
RES = 512
PATCH_SIZE = 16
LABEL_RES = 512
LABEL_PATCH_SIZE = 16
def get_config(arg=''):
"""Config for training."""
arg = bvcc.parse_arg(arg, runlocal=False, singlehost=False)
config = ConfigDict()
config.input = {}
config.input.pp = (
f'decode|coco_panoptic|concat(["semantics","instances"], "labels")|'
f'randu("fliplr")|det_fliplr(key="image")|det_fliplr(key="labels")|'
f'inception_box|crop_box(key="image")|crop_box(key="labels")|'
f'resize({LABEL_RES}, inkey="image", outkey="image_ctx")|'
f'resize({RES})|resize({LABEL_RES},key="labels",method="nearest")|'
f'value_range(-1, 1, key="image_ctx")|'
f'value_range(-1, 1)|make_canonical|keep("image","image_ctx","labels")'
)
pp_eval = (
f'decode|coco_panoptic|concat(["semantics","instances"], "labels")|'
f'resize({LABEL_RES}, inkey="image", outkey="image_ctx")|'
f'resize({RES})|resize({LABEL_RES},key="labels",method="nearest")|'
f'value_range(-1, 1, key="image_ctx")|'
f'value_range(-1, 1)|make_canonical|keep("image","image_ctx","labels")'
)
pp_predict = (
f'resize({LABEL_RES}, inkey="image", outkey="image_ctx")|resize({RES})|'
f'value_range(-1, 1, key="image_ctx")|value_range(-1, 1)|'
f'keep("image","image_ctx","image/id")' # image/id used for rng seeds.
)
config.input.data = dict(name='coco/2017_panoptic', split='train[4096:]')
config.input.batch_size = 512
config.input.shuffle_buffer_size = 50_000
config.total_epochs = 200
config.log_training_steps = 50
config.ckpt_steps = 1000
config.keep_ckpt_steps = 5000
config.prefetch_to_device = 2
config.seed = 0
# Optimizer section
config.optax_name = 'big_vision.scale_by_adafactor'
config.optax = dict(beta2_cap=0.95)
config.lr = 0.001
config.wd = 0.000001
config.lr_mults = [
('pos_embedding_encoder.*', 0.1),
('EmbedPatches.*', 0.1),
('encoder.*', 0.1),
('decoder.*', 1.0)
]
config.schedule = dict(decay_type='cosine', warmup_steps=4_000)
# Oracle section
config.oracle = ConfigDict()
config.oracle.task = 'proj.uvim.panoptic_task'
config.oracle.model_init = 'gs://big_vision/uvim/panoptic_stageI_params.npz'
config.oracle.model_name = 'proj.uvim.vit'
config.oracle.model = ConfigDict(VQVAE_MODELS['base'])
config.oracle.model.input_size = (LABEL_RES, LABEL_RES)
config.oracle.model.patch_size = (LABEL_PATCH_SIZE, LABEL_PATCH_SIZE)
config.oracle.model.code_len = 256
config.oracle.model.dict_size = 4096
config.oracle.model.codeword_dim = 768
config.oracle.model.with_encoder_ctx = True
config.oracle.model.with_decoder_ctx = True
config.oracle.model.code_dropout = 'random'
config.oracle.model.bottleneck_resize = True
config.oracle.model.inputs = {
'semantics': (133 + 1, LABEL_PATCH_SIZE**2), # +1 for void label
'instances': (100, LABEL_PATCH_SIZE**2), # COCO: actually 98 train/78 validation.
}
config.oracle.model.outputs = config.oracle.model.inputs
# Model section
config.model_name = 'proj.uvim.vtt'
# config.model_init = {'encoder': 'howto-i21k-B/8'}
config.model_init = {'encoder': 'howto-i21k-L/16'}
config.model = ConfigDict(VTT_MODELS['large'])
config.model.patches = ConfigDict({'size': (PATCH_SIZE, PATCH_SIZE)})
config.model.vocab_size = config.oracle.model.get_ref('dict_size') + 1
config.model.posemb_type = 'learn'
config.model.input_size = (RES, RES)
config.model.seq_len = config.oracle.model.get_ref('code_len')
# Evaluation section
config.evals = {}
config.evals.val = ConfigDict()
config.evals.val.type = 'proj.uvim.compute_mean'
config.evals.val.pred = 'validation'
config.evals.val.data = dict(name=config.input.data.name, split='train[:4096]')
config.evals.val.pp_fn = pp_eval
config.evals.val.log_steps = 1000
base = {
'type': 'proj.uvim.coco_panoptic',
'pp_fn': pp_predict,
'log_steps': 10_000,
# Filters objects that occupy less than 0.03^2 fraction of all pixels.
# 'predict_kwargs': {'min_fraction': 0.03 ** 2},
}
config.evals.coco_panoptic_train = dict(**base, split='train[4096:8192]')
config.evals.coco_panoptic_holdout = dict(**base, split='train[:4096]')
config.evals.coco_panoptic = dict(**base, split='validation')
# config.evals.save_pred = dict(type='proj.uvim.save_predictions')
# config.evals.save_pred.pp = pp_eval.replace('decode|', '')
# config.evals.save_pred.log_steps = 100_000
# config.evals.save_pred.dataset = config.dataset
# config.evals.save_pred.split = 'validation[:1024]'
# config.evals.save_pred.outfile = 'inference.npz'
if arg.singlehost:
config.input.batch_size = 32
config.num_epochs = 50
elif arg.runlocal:
config.input.batch_size = 4
config.input.shuffle_buffer_size = 10
config.evals.val.data.split = 'train[:16]'
return config