File size: 15,391 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Generic tensor preprocessing ops.

All preprocessing ops should return a data processing functors. A data
is represented as a dictionary of (TF) tensors. The functors output a modified
dictionary.
"""

import collections

from big_vision.pp import utils
from big_vision.pp.registry import Registry
import big_vision.utils as bv_utils
import jax
import numpy as np
import tensorflow as tf


@Registry.register("preprocess_ops.value_range")
@utils.InKeyOutKey()
def get_value_range(vmin=-1, vmax=1, in_min=0, in_max=255.0, clip_values=False):
  """Transforms a [in_min,in_max] image to [vmin,vmax] range.

  Input ranges in_min/in_max can be equal-size lists to rescale the invidudal
  channels independently.

  Args:
    vmin: A scalar. Output max value.
    vmax: A scalar. Output min value.
    in_min: A scalar or a list of input min values to scale. If a list, the
      length should match to the number of channels in the image.
    in_max: A scalar or a list of input max values to scale. If a list, the
      length should match to the number of channels in the image.
    clip_values: Whether to clip the output values to the provided ranges.

  Returns:
    A function to rescale the values.
  """

  def _value_range(image):
    """Scales values in given range."""
    in_min_t = tf.constant(in_min, tf.float32)
    in_max_t = tf.constant(in_max, tf.float32)
    image = tf.cast(image, tf.float32)
    image = (image - in_min_t) / (in_max_t - in_min_t)
    image = vmin + image * (vmax - vmin)
    if clip_values:
      image = tf.clip_by_value(image, vmin, vmax)
    return image

  return _value_range


@Registry.register("preprocess_ops.lookup")
@utils.InKeyOutKey()
def get_lookup(mapping, npzkey="fnames", sep=None):
  """Map string to number."""

  # For NumPy files, we use the `npzkey` array in that file as the list of
  # strings which are mapped to their index in that array.
  # This is especially useful when other data (eg precomputed predictions)
  # goes along with this mapping, to have everything in one place (the npz).
  if mapping.endswith(".npz"):
    with tf.io.gfile.GFile(mapping, "rb") as f:
      keys = np.array(np.load(f, allow_pickle=False)[npzkey])
    vals = np.arange(len(keys))

  # Otherwise, we simply use the file as a text file, with either of:
  # - a string per line, mapped to its line-number
  # - a pair, separated by `sep` per line, first value being the string, second
  #   value being the integer that the string is mapped to.
  else:
    with tf.io.gfile.GFile(mapping, "r") as f:
      buf = f.read()
    if sep is None:  # values are the line numbers
      keys = buf.splitlines()
      vals = np.arange(len(keys))
    else:  # each line is key<sep>val, also make val int
      keys, vals = zip(*[l.split(sep) for l in buf.splitlines()])
      vals = [int(v) for v in vals]

  def _do_the_mapping(needle):
    """Map string to number."""
    with tf.init_scope():  # (Originally added for performance reasons.)
      table = tf.lookup.StaticHashTable(
          tf.lookup.KeyValueTensorInitializer(keys, vals), -1)
    return table.lookup(needle)

  return _do_the_mapping


@Registry.register("preprocess_ops.onehot")
def get_onehot(depth,
               key="labels",
               key_result=None,
               multi=True,
               on=1.0,
               off=0.0):
  """One-hot encodes the input.

  Args:
    depth: Length of the one-hot vector (how many classes).
    key: Key of the data to be one-hot encoded.
    key_result: Key under which to store the result (same as `key` if None).
    multi: If there are multiple labels, whether to merge them into the same
      "multi-hot" vector (True) or keep them as an extra dimension (False).
    on: Value to fill in for the positive label (default: 1).
    off: Value to fill in for negative labels (default: 0).

  Returns:
    Data dictionary.
  """

  def _onehot(data):
  # When there's more than one label, this is significantly more efficient
    # than using tf.one_hot followed by tf.reduce_max; we tested.
    labels = data[key]
    labels = tf.cast(labels, tf.int64)  # both scatter and one_hot expect this
    if labels.shape.rank > 0 and multi:
      x = tf.scatter_nd(labels[:, None], tf.ones(tf.shape(labels)[0]), (depth,))
      x = tf.clip_by_value(x, 0, 1) * (on - off) + off
    else:
      x = tf.one_hot(labels, depth, on_value=on, off_value=off)
    data[key_result or key] = x
    return data

  return _onehot


@Registry.register("preprocess_ops.keep")
def get_keep(*keys):
  """Keeps only the given keys."""

  def _keep(data):
    return {k: v for k, v in data.items() if k in keys}

  return _keep


@Registry.register("preprocess_ops.drop")
def get_drop(*keys):
  """Drops the given keys."""

  def _drop(data):
    return {k: v for k, v in data.items() if k not in keys}

  return _drop


@Registry.register("preprocess_ops.copy")
def get_copy(inkey, outkey):
  """Copies value of `inkey` into `outkey`."""

  def _copy(data):
    # A "semi-deep" copy. deepcopy doesn't work when tf tensors are part of the
    # game. What we want, is to only copy the python structure (dicts, lists)
    # and keep tensors as they are, since we never modify them in-place anyways.
    # The following achieves exactly that.
    data[outkey] = jax.tree.map(lambda x: x, data[inkey])
    return data

  return _copy


@Registry.register("preprocess_ops.squeeze_last_dim")
@utils.InKeyOutKey()
def get_squeeze_last_dim():
  def _squeeze_last_dim(x):
    return tf.squeeze(x, axis=-1)
  return _squeeze_last_dim


@Registry.register("preprocess_ops.concat")
def get_concat(inkeys, outkey=None, axis=-1):
  """Concatenates elements along some axis."""

  def _concat(data):
    data[outkey or inkeys[0]] = tf.concat([data[k] for k in inkeys], axis)
    return data

  return _concat


@Registry.register("preprocess_ops.rag_tensor")
@utils.InKeyOutKey()
def get_rag_tensor():
  """Converts the specified feature to ragged tensor."""

  def rag_tensor(raw_tensor):
    # Note: Add one more dimension as `from_tensor` requires at least rank 2.
    return tf.RaggedTensor.from_tensor(raw_tensor[None])

  return rag_tensor


@Registry.register("preprocess_ops.pad_to_shape")
@utils.InKeyOutKey()
def get_pad_to_shape(shape, pad_value=0, where="after"):
  """Pads tensor to specified `shape`."""

  def _pads(cur, tgt):
    if tgt is None:
      return [0, 0]
    diff = tgt - cur
    return {
        "before": [diff, 0],
        "after": [0, diff],
        "both": [diff // 2, diff - diff // 2],
    }[where]

  def _pad_to_shape(x):
    assert len(x.shape.as_list()) == len(shape)
    paddings = [_pads(tgt=shape[i], cur=tf.shape(x)[i])
                for i in range(len(shape))]
    constant_value = tf.constant(pad_value, x.dtype)
    ret = tf.pad(x, paddings, constant_values=constant_value)
    ret.set_shape(shape)
    return ret

  return _pad_to_shape


@Registry.register("preprocess_ops.flatten")
def get_flatten():
  """Flattens the keys of data with separator '/'."""

  def flatten(data):
    flat, _ = bv_utils.tree_flatten_with_names(data)
    return dict(flat)

  return flatten


@Registry.register("preprocess_ops.reshape")
@utils.InKeyOutKey()
def get_reshape(new_shape):
  """Reshapes tensor to a given new shape.

  Args:
    new_shape: new shape for the tensor.

  Returns:
    A function for reshaping a tensor.

  """

  def _reshape(tensor):
    """Reshapes a tensor to a given shape."""
    dtype = tensor.dtype
    tensor = tf.reshape(tensor, new_shape)
    return tf.cast(tensor, dtype)

  return _reshape


@Registry.register("preprocess_ops.setdefault")
def get_setdefault(key, value):
  """If `key` is an empty tensor or missing, set it to `value`."""
  def _setdefault(data):
    x = data.get(key, tf.constant(value))
    v = tf.constant(value, dtype=x.dtype)
    v = tf.broadcast_to(v, [s or 1 for s in x.shape])
    data[key] = tf.cond(tf.size(x) > 0, lambda: x, lambda: v)
    return data
  return _setdefault


@Registry.register("preprocess_ops.choice")
def get_choice(n="single", key=None, fewer_ok=False, inkey=None, outkey=None):
  """Chooses the same `n` random entries of all `keys`.

  Args:
    n: how many entries to randomly sample (without repeat). Possible values:
      - int: that many entries (or fewer if there's fewer, see `fewer_ok`.)
      - "single": The string "single" only chooses one and drop the leading dim.
      - [min, max]: A pair means randomly take between min/max examples (incl.).
    key: str or list of str: See Note.
    fewer_ok: whether to fail when there's fewer than `n` elements to choose
              from (and hence set static shape to `n`), or whether to allow it.
              (and hence have unknown static shape).
    inkey: str or list of str: See Note.
    outkey: str or list of str: See Note.

  Note:
    If key/inkey/outkey is a list, then the same random entries are chosen for
    all of the keys. Other than that, they function the same as InKeyOutKey.

    The outkey can also contain the placeholder `{key}` that'll be .

  Examples:
    choice(key="alt_text/text")
    choice(n=128, key=["patches", "positions"])
    choice(inkey=["questions_i18n", "answers_i18n"], outkey=["q", "a"])

  Returns:
    The pp op.
  """

  # Normalize keys:
  inkeys = utils.maybe_repeat(inkey or key, 1)
  outkeys = utils.maybe_repeat(outkey or key, 1)
  outkeys = [ok.format(key=ik) for ok, ik in zip(outkeys, inkeys)]

  # Let's DRY on this condition and give it a name.
  is_varlen = isinstance(n, (list, tuple))
  min_n = n[0] if is_varlen else 1 if n == "single" else n

  def _choice(data):
    nitems = tf.shape(data[inkeys[0]])[0]

    # Sanity check that all keys have same leading dimension, and that is at
    # least as large as the minimum requested output.
    lengths = [tf.shape(data[k])[0] for k in inkeys]
    checks = [tf.debugging.assert_equal(l, nitems) for l in lengths]
    if not fewer_ok:  # Since we check for all-same, a single suffices here.
      checks.append(tf.debugging.assert_greater_equal(nitems, min_n))
    with tf.control_dependencies(checks):
      nitems = tf.identity(nitems)

    if n == "single":
      index = tf.random.uniform([], 0, nitems, dtype=tf.int32)
    else:
      # Subsample by shuffling and taking first n, but...
      indices = tf.random.shuffle(tf.range(nitems))
      end = n
      if is_varlen:
        end = tf.random.uniform([], n[0], n[1] + 1, dtype=tf.int32)
      # ...keep the order while subsampling (it might have a meaning, eg boxes)
      indices = tf.sort(indices[:end])

    for ik, ok in zip(inkeys, outkeys):
      if n == "single":
        result = data[ik][index]
      else:
        result = tf.gather(data[ik], indices, axis=0)
        if not is_varlen:  # Give static shape when we can.
          result = tf.ensure_shape(result, [n] + [None] * (result.ndim - 1))
      data[ok] = result

    return data
  return _choice


def _shuffled_index(count, nitems, seed):
  """Returns index from a shuffled sequence (items only repeat after epoch)."""
  nitems = tf.cast(nitems, count.dtype)
  item_epoch, item_offset = (count // nitems, count % nitems)
  shuffled_indices = tf.random.experimental.stateless_shuffle(
      tf.range(nitems), seed=tf.random.fold_in(seed, item_epoch))
  return shuffled_indices[item_offset]


@Registry.register("preprocess_ops.choice_no_replacement")
def get_choice_no_replacement(key=None, inkey=None, outkey=None):
  """Chooses the same random (no replacement) entry of all `keys`.

  Note: Consider using this for iterating over small datasets with a small
  number of epochs. It differs from `choice(n='single')` in that if an example,
  as identified by its `_id` field, is seen N times then it will cycled through
  all the inkeys values before repeating them. Additionally each repetition uses
  a different order.

  Caveats: requires dataset to provide a _id field and uses host RAM to keep a
  counter how often each id is seen. It is also not robust to preemptions.

  Args:
    key: str or list of str: See Note.
    inkey: str or list of str: See Note.
    outkey: str or list of str: See Note.

  Note:
    If key/inkey/outkey is a list, then the same random entries are chosen for
    all of the keys. Other than that, they function the same as InKeyOutKey.

    The outkey can also contain the placeholder `{key}` that'll be replaced
    by the inkey name.

  Examples:
    choice(key="alt_text/text")
    choice(key=["patches", "positions"])
    choice(inkey=["questions_i18n", "answers_i18n"], outkey=["q", "a"])

  Returns:
    The pp op.
  """
  # Normalize keys:
  inkeys = utils.maybe_repeat(inkey or key, 1)
  outkeys = utils.maybe_repeat(outkey or key, 1)
  outkeys = [ok.format(key=ik) for ok, ik in zip(outkeys, inkeys)]

  # TODO: Ideally the data pipeline should provide us with an epoch
  # counter. For now count how often we see a given example id and don't worry
  # on memory consumption. Counter returns 0 the first time an example is seen.
  counter = collections.defaultdict(lambda: -1)
  def _seen_count(example_id):
    example_id = example_id.item()
    counter[example_id] += 1
    return counter[example_id]

  # We need a seed to deterministically decide on a shuffled sequence and use
  # the number of times an example was seen to iterate through it. The seed
  # should be different for every instance of a create preprocessing function
  # but it has to be fixed for each instance.
  seed = tf.random.uniform(
      [2], minval=tf.int32.min, maxval=tf.int32.max, dtype=tf.int32)

  def _choice(data):
    nitems = tf.shape(data[inkeys[0]])[0]

    # Sanity check that all keys have same leading dimension.
    checks = [
        tf.debugging.assert_equal(tf.shape(data[k])[0], nitems)
        for k in inkeys
    ]
    with tf.control_dependencies(checks):
      nitems = tf.identity(nitems)

    # Using the seed, example id and the number of times an example was seen
    # pick an `index` such that items are only repeated after all items are seen
    # an equal number of times. E.g. it could return indexes from this sequence:
    #   [0, 1, 2, 1, 2, 0, 2, 0, 1, 0, 2, 1, ...].
    count = tf.numpy_function(
        _seen_count, (data["_id"],), Tout=tf.int64, stateful=True)
    count = tf.cast(count, tf.int32)
    nitems = tf.cast(nitems, tf.int32)
    shuffle_epoch = count // nitems
    shuffle_offset = count % nitems

    example_seed = tf.random.fold_in(seed, data["_id"])
    shuffle_seed = tf.random.fold_in(example_seed, shuffle_epoch)
    shuffle = tf.random.experimental.stateless_shuffle(
        tf.range(nitems), seed=shuffle_seed)
    index = shuffle[shuffle_offset]

    # Select item[index] for all keys.
    for ik, ok in zip(inkeys, outkeys):
      data[ok] = data[ik][index]
    return data

  return _choice