File size: 13,248 Bytes
74e8f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""ImageNet input pipeline."""
import collections
import functools
import itertools
import math
import multiprocessing.pool
from absl import logging
from big_vision.datasets import sequence_packing
import big_vision.datasets.core as ds_core
import big_vision.pp.builder as pp_builder
import big_vision.utils as u
import einops
import jax
import numpy as np
import tensorflow as tf
DEFAULT_NUM_PARALLEL_CALLS = 100
def make_for_train(
data, preprocess_fn, batch_size,
shuffle_buffer_size=None, cache_raw=False,
num_parallel_calls=DEFAULT_NUM_PARALLEL_CALLS, prefetch=2,
*,
pre_filter_fn=None, post_filter_fn=None,
pack=None, skip_errors=False,
):
"""Makes an input pipeline for training."""
# Use data filtering at your own risk: the actual split sizes won't be known
# in advance, so epoch-based things won't work correctly.
data = _add_tpu_host_options(data)
data = data.filter(pre_filter_fn) if pre_filter_fn else data
data = data.cache() if cache_raw else data
# First shuffle and then repeat (each with a different shuffle). This way
# the data for one epoch is all seen before the next one is processed and
# significantly affects the number of times each example is seen when
# processing for small number of epochs.
if shuffle_buffer_size:
data = data.shuffle(shuffle_buffer_size, reshuffle_each_iteration=True)
data = data.repeat(None)
data = data.map(preprocess_fn, num_parallel_calls=num_parallel_calls)
data = data.filter(post_filter_fn) if post_filter_fn else data
data = data.ignore_errors(log_warning=True) if skip_errors else data
data = sequence_packing.pack_dataset(data, pack) if pack else data
# Drop remainder makes shape fully static, so we can later use it if needed.
if batch_size:
data = data.batch(batch_size // jax.process_count(), drop_remainder=True)
if prefetch: # None means autotune, but we never want that.
data = data.prefetch(prefetch)
return data
def training(input_config):
"""Reads the data from a single dataset, or mixes it from multiple.
The data is read either from one or mixed from multiple datasets, depending
on the `input_config`.
Args:
input_config: Configures the input pipeline. See input_pipeline_test for
examples.
Returns:
A tuple containing (possibly mixed) tf.data.Dataset and a total number of
training examples.
"""
per_pipeline_configs = (
"shuffle_buffer_size", "cache_raw", "num_parallel_calls",
"pre_filter_fn", "post_filter_fn", "pack", "skip_errors")
def config_to_kw(config):
assert "filter_fn" not in config, "Deprecated; use `pre_filter_fn` instead."
return {k: config[k] for k in per_pipeline_configs if k in config}
batch_size = input_config.batch_size
# Handle separately the common case when no mixing happens.
if isinstance(input_config.data.get("name"), str):
train_data = ds_core.get(**input_config.data)
train_ds = make_for_train(
data=train_data.get_tfdata(ordered=False),
batch_size=batch_size,
preprocess_fn=pp_builder.get_preprocess_fn(input_config.get("pp")),
prefetch=input_config.get("prefetch", 2), # Default 2 for bwd compat.
**config_to_kw(input_config)
)
return train_ds, train_data.total_examples
# A helpful error instead of silent ignore:
for k in per_pipeline_configs:
assert k not in input_config, f"{k} is per-dataset in multi-input."
# Parallelize the loading of datasets when doing data mixture.
# For larger mixes, we sometimes spend >5min when doing sequentially.
# NOTE: functools.cache is thread-safe.
def _make(name_and_weight):
name, weight = name_and_weight
dataset = input_config[name]
train_data = ds_core.get(**dataset.data)
dataset = make_for_train(
data=train_data.get_tfdata(ordered=False),
# Don't batch the data just yet, it will be done after
# mixing the different datasets below.
batch_size=None,
preprocess_fn=pp_builder.get_preprocess_fn(dataset.get("pp"), name),
prefetch=0, # Prefetching each pipeline leads to huge OOMs.
**config_to_kw(dataset)
)
if keys := input_config.get("keep_only"):
dataset = dataset.map(lambda d, keys=keys: {k: d[k] for k in keys})
return name, dataset, weight, train_data.total_examples
names, datasets, weights, totals = [], [], [], []
pool = multiprocessing.pool.ThreadPool(len(input_config.data))
for name, dataset, weight, total in pool.map(
# Skip weight=0 datasets as a convenient optimization in sweeps.
_make, ((name, w) for name, w in input_config.data.items() if w)):
names.append(name)
datasets.append(dataset)
weights.append(weight)
totals.append(total)
# Normalize the weights such that they sum up to 1.
weights = [x / sum(weights) for x in weights]
logging.info(
"NOTE: Total dataset mix size: %d\nContributions:\n%s", sum(totals),
"\n".join(f"{ds}: {n} ({w * 100:.1g}%)"
for ds, n, w in zip(names, totals, weights))
)
train_ds = tf.data.Dataset.sample_from_datasets(
datasets, weights, stop_on_empty_dataset=True)
if input_config.get("pack"):
train_ds = sequence_packing.pack_dataset(train_ds, input_config.get("pack"))
train_ds = train_ds.batch(
input_config["batch_size"] // jax.process_count(), drop_remainder=True)
if (pf := input_config.get("prefetch", 2)):
train_ds = train_ds.prefetch(pf)
return train_ds, sum(totals)
# The pipeline below is used for evals in multi-{G,T}PU and multi-host settings.
# As the total number of examples may not be evenly divisible accross all
# devices, we use the `infinite tf.data padding` trick, which was suggested by
# Andreas Steiner and also implemented by him in the clu library:
# https://github.com/google/CommonLoopUtils/blob/84b777c42dfd3fb6685537138433bfeb5241a006/clu/deterministic_data.py#L304.
def make_for_inference(
data, preprocess_fn, batch_size, num_ex_per_process,
cache_raw=False, cache_final=False,
num_parallel_calls=DEFAULT_NUM_PARALLEL_CALLS, prefetch=1,
):
"""Makes an input pipeline for inference."""
data = _add_tpu_host_options(data)
data = data.cache() if cache_raw else data
data = data.map(_add_internal_fields(preprocess_fn),
num_parallel_calls=num_parallel_calls)
data = data.concatenate(_get_pad_data(data))
local_batch_size = batch_size // jax.process_count()
# This is just like `batch`, but allows batching elements of different shapes
# into a tf.RaggedTensor. Elements of the same fixed shape remain tf.Tensors.
# Since we do 'infinite' padding it is safe to drop the remainder.
data = data.ragged_batch(batch_size=local_batch_size, drop_remainder=True)
# We need to make sure that all hosts process all data and exactly the same
# number of batches. Below we take max per-host num examples and use it on all
# hosts to derive the number of batches.
num_batches = math.ceil(max(num_ex_per_process) / local_batch_size)
data = data.take(num_batches)
# Note we cache data after a finite number of batches is taken.
data = data.cache() if cache_final else data
data = data.repeat()
data = data.prefetch(prefetch) if prefetch else data
return data, num_batches
def _get_pad_data(data):
def zeros_like_spec(spec):
# For unknown/flexible dimensions (None), just use 0 instead.
return tf.zeros([x or 0 for x in spec.shape], spec.dtype)
zero = jax.tree.map(zeros_like_spec, data.element_spec)
return tf.data.Dataset.from_tensors(zero).repeat()
def _add_internal_fields(pp_fn):
"""Wraps pp_fn to add _mask and _id keys."""
# Adds internal keys, that we either, in this order of preference:
# 1. keep from result of pp_fn,
# 2. carry over from raw (not pp_fn'd) example, or
# 3. add, if that makes sense.
def _pp_fn(example):
result = pp_fn(example)
# _mask will be False on padded examples (see _get_pad_data).
result.setdefault("_mask", example.get("_mask", tf.constant(True)))
# Not all data-sources can provide an ID. Only carry-over if it can:
if "_id" in example and "_id" not in result:
result["_id"] = example["_id"]
return result
return _pp_fn
def _add_tpu_host_options(data):
options = tf.data.Options()
options.threading.private_threadpool_size = 48
options.threading.max_intra_op_parallelism = 1
# Stop a whole bunch of magic stuff that eats up all RAM:
options.experimental_optimization.inject_prefetch = False
return data.with_options(options)
def prefetch_iterator(it, n):
"""Runs iterator `it` ahead for `n` steps. Adapted from flax."""
if not n:
yield from it
return
queue = collections.deque()
def enqueue(n_steps): # Enqueues *up to* `n` elements from the iterator.
for data in itertools.islice(it, n_steps):
# Prefetching will parallelize any processing that happens in a different
# thread (like `jax.device_put()`), but it will be of no use for
# processing that happens in the same thread.
queue.append(data)
enqueue(n) # Fill up the buffer.
while queue:
yield queue.popleft()
enqueue(1)
def threadstart_iterator(it):
"""Starts an iterator right away in a background thread."""
# We already want to "start" the iterator in order to start the underlying
# dataset prefetch mechanisms, so here we get the first element. But we don't
# want to lose it from training, so we yield that one afterwards.
# (internal link)
pool = multiprocessing.pool.ThreadPool(processes=1)
first_ex_promise = pool.apply_async(lambda: next(it))
yield first_ex_promise.get()
yield from it
def tf_to_numpy(x):
"""Convert any TF types to numpy."""
if isinstance(x, tf.Tensor):
if x.dtype != tf.string: # Dense, non-string tensor? Easy!
return x.numpy()
else: # A dense string tensor? Turn into actual strings, not bytes.
return np.vectorize(bytes.decode, otypes=[str])(x.numpy())
# The rest deals with RaggedTensors, for two main reasons:
# - For strings, recursively apply the above conversion
# - For common cases (eg batch of images), return more reasonable shapes.
# Replace all None's in the shape by a fixed number, in the (somewhat common)
# case that they are marked ragged, but really all have the same shape.
real_shape = list(x.shape)
for i, s in enumerate(real_shape[1:]):
if s is not None: continue
rowlens = np.diff(x.nested_row_splits[i])
if len(set(rowlens)) == 1:
real_shape[i + 1] = rowlens[0]
if None not in real_shape:
return tf_to_numpy(x.flat_values).reshape(real_shape)
# It's actually ragged, reconstruct the array from the variable length pieces.
splits = x.row_splits.numpy()
rows = [tf_to_numpy(x.values[splits[i]:splits[i + 1]])
for i in range(len(splits) - 1)]
return np.fromiter(rows, dtype=object)
# Note that the order of global devices for sharding data is important and
# should be compatible with device order used for models params, state, etc.
def start_global(
data, global_devices, n_prefetch=1, keep_on_cpu=frozenset(), warmup=False):
"""Starts the global input pipeline."""
def maybe_shard(name, x):
if name in keep_on_cpu:
return tf_to_numpy(x)
return u.make_fsarray_from_local_slice(x, global_devices)
it = iter(data)
if warmup: # actually pre-fill shuffle buffers etc.
it = threadstart_iterator(it)
it = (u.tree_map_with_names(maybe_shard, elem) for elem in it)
return prefetch_iterator(it, n_prefetch)
##########################################################################
# The code below is pmap-specific and is deprecated, please switch to jit.
##########################################################################
def shard_and_put(x, shard=True, put=True):
x = np.asarray(memoryview(x)) # No-copy conversion: http://(internal link)
if shard:
x = einops.rearrange(x, "(d l) ... -> d l ...", d=jax.local_device_count())
if shard and put: # Only works for pmap (for now).
x = jax.device_put_sharded(list(x), jax.local_devices())
return x
def start_input_pipeline(data, n_prefetch=1, shard=True):
fn = functools.partial(shard_and_put, shard=shard, put=n_prefetch)
it = (jax.tree.map(fn, elem) for elem in iter(data))
return prefetch_iterator(it, n_prefetch)
def start_ragged_input_pipeline(data, n_prefetch=1, shard=True, ragged=None):
def maybe_shard_and_put(name, x):
return x if name in (ragged or {}) else shard_and_put(x, shard)
it = (u.tree_map_with_names(maybe_shard_and_put, elem) for elem in iter(data))
return prefetch_iterator(it, n_prefetch)
|