File size: 7,191 Bytes
74e8f2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# Copyright 2024 Big Vision Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# pylint: disable=line-too-long
r"""Implements textvqa in TFDS structure.

It's small data, so simple to run locally. First, copy the data to local disk:

  mkdir -p /tmp/data/textvqa
  cd /tmp/data/textvqa
  curl -O https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip
  curl -O https://dl.fbaipublicfiles.com/textvqa/images/test_images.zip
  curl -O https://dl.fbaipublicfiles.com/textvqa/data/TextVQA_0.5.1_train.json
  curl -O https://dl.fbaipublicfiles.com/textvqa/data/TextVQA_0.5.1_val.json
  curl -O https://dl.fbaipublicfiles.com/textvqa/data/TextVQA_0.5.1_test.json
  # The Rosetta_OCR files are probably not needed.
  # curl -O https://dl.fbaipublicfiles.com/textvqa/data/TextVQA_Rosetta_OCR_v0.2_train.json
  # curl -O https://dl.fbaipublicfiles.com/textvqa/data/TextVQA_Rosetta_OCR_v0.2_val.json
  # curl -O https://dl.fbaipublicfiles.com/textvqa/data/TextVQA_Rosetta_OCR_v0.2_test.json
  unzip train_val_images.zip
  rm train_val_images.zip
  unzip test_images.zip
  rm test_images.zip
  # Background: at https://textvqa.org/dataset/ it says:
  # "Note: Some of the images in OpenImages are rotated,
  # please make sure to check the Rotation field in the Image IDs files
  # for train and test."
  curl -O https://storage.googleapis.com/openimages/2018_04/train/train-images-boxable-with-rotation.csv
  curl -O https://storage.googleapis.com/openimages/2018_04/test/test-images-with-rotation.csv
  mv train-images-boxable-with-rotation.csv train_images/rotation.csv
  mv test-images-with-rotation.csv test_images/rotation.csv

Then, run conversion locally (make sure to install tensorflow-datasets for the `tfds` util):

  cd big_vision/datasets
  env TFDS_DATA_DIR=/tmp/tfds tfds build --datasets=textvqa

Example to load:

  import tensorflow_datasets as tfds
  dataset = tfds.load('textvqa', split='train', data_dir='/tmp/tfds')
"""
import json
import os

from absl import logging
import numpy as np
import pandas as pd
import tensorflow as tf
import tensorflow_datasets as tfds


_DESCRIPTION = """TextVqa dataset."""

# pylint: disable=line-too-long
_CITATION = (
    '@inproceedings{singh2019towards,'
    'title={Towards VQA Models That Can Read},'
    'author={Singh, Amanpreet and Natarjan, Vivek and Shah, Meet and Jiang, Yu and Chen, Xinlei and Parikh, Devi and Rohrbach, Marcus},'
    'booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},'
    'pages={8317-8326},'
    'year={2019}}'
    )
# pylint: enable=line-too-long

# When running locally (recommended), copy files as above and use these:
_FILEPATH = '/tmp/data/textvqa/'
_TRAIN_FILES = '/tmp/data/textvqa/TextVQA_0.5.1_train.json'
_VAL_FILES = '/tmp/data/textvqa/TextVQA_0.5.1_val.json'
_TEST_FILES = '/tmp/data/textvqa/TextVQA_0.5.1_test.json'
_ROTATION_CSV = 'rotation.csv'


class TextVqa(tfds.core.GeneratorBasedBuilder):
  """DatasetBuilder for textvqa dataset."""

  VERSION = tfds.core.Version('1.0.1')
  RELEASE_NOTES = {
      '1.0.0': 'Initial release.',
      '1.0.1': 'Undo rotation for known rotated images.',
  }

  def _info(self) -> tfds.core.DatasetInfo:
    """Returns the dataset metadata.

    (tfds.core.DatasetInfo object)
      These are the features of your dataset like images, labels, etc.
    """

    return tfds.core.DatasetInfo(
        builder=self,
        description=_DESCRIPTION,
        features=tfds.features.FeaturesDict({
            'image/id': tfds.features.Scalar(np.int32),
            'image_filepath': tfds.features.Text(),
            'image': tfds.features.Image(encoding_format='jpeg'),
            'question_id': tfds.features.Scalar(np.int32),
            'question': tfds.features.Text(),
            'answers': tfds.features.Sequence(tfds.features.Text()),
        }),
        supervised_keys=None,  # Set to `None` to disable
        homepage='https://textvqa.org/',
        citation=_CITATION,
    )

  def _split_generators(self, dl_manager: tfds.download.DownloadManager):
    """Returns SplitGenerators."""
    def json_to_examples(data, image_dir):
      # Load rotation csv.
      logging.info('Processing %d items in %s', len(data), image_dir)
      rot = pd.read_csv(os.path.join(_FILEPATH, image_dir, _ROTATION_CSV))
      rotation_by_id = {}
      for row in rot.itertuples():
        rotation = int(row.Rotation) if not np.isnan(row.Rotation) else 0
        rotation_by_id[row.ImageID] = rotation

      examples = {}
      for v in data:
        image_id = str(v['image_id'])
        image_filepath = os.path.join(_FILEPATH, image_dir, image_id + '.jpg')
        question_id = v['question_id']
        examples[question_id] = {
            'image/id': question_id,
            'image_filepath': image_filepath,
            'image': image_filepath,
            'rotation': rotation_by_id[image_id],
            'question_id': question_id,
            'question': v['question'],
            'answers': v.get('answers', []),  # No answers in test set.
        }
      return examples

    # Returns the Dict[split names, Iterator[Key, Example]]
    with open(_TRAIN_FILES) as f:
      train_data = json_to_examples(json.load(f)['data'], 'train_images')
    with open(_VAL_FILES) as f:
      # Validation images are stored in the train_images folder.
      val_data = json_to_examples(json.load(f)['data'], 'train_images')
    with open(_TEST_FILES) as f:
      test_data = json_to_examples(json.load(f)['data'], 'test_images')
    return {
        'train': self._generate_examples(train_data),
        'val': self._generate_examples(val_data),
        'test': self._generate_examples(test_data),
    }

  def _generate_examples(self, data):
    """Generate a tf.Example object.

    Args:
      data: a dictionary with the image/id.

    Yields:
      (key, example) tuples from dataset. The example has format specified in
        the above DatasetInfo.
    """
    for k, v in data.items():
      # If the image is rotated, we undo the rotation here and re-encode.
      image_bytes = open(v['image_filepath'], 'rb').read()
      if v['rotation'] != 0:
        rotation = v['rotation']
        assert rotation % 90 == 0
        turns = int(rotation / 90)
        image = tf.image.decode_jpeg(image_bytes)
        image_bytes = tf.io.encode_jpeg(
            tf.image.rot90(image, turns), quality=100
        ).numpy()
      # If no rotation was needed, we just pass along the unchanged bytes.
      v['image'] = image_bytes

      # Now all rotation should have been accounted for. And we don't want to
      # pass on the (now obsolete) rotation info as features.
      del v['rotation']

      yield k, v