ESPnet
Afar
code
psharma-models / code(4)
pra1223's picture
Update code(4)
e7be622 verified
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
import re
# --- Backend Functions ---
def initialize_gemini_api(api_key):
"""Initializes the Gemini model and tokenizer."""
try:
# Using Auto Classes is generally recommended for loading from Hugging Face
tokenizer = AutoTokenizer.from_pretrained("google/gemini-1.5-pro-001", token=api_key) #check if model has a tokenizer and version number.
model = AutoModelForCausalLM.from_pretrained("google/gemini-1.5-pro-001", token=api_key, device_map="auto", torch_dtype=torch.bfloat16) #Added model device and dtype.
return model, tokenizer
except Exception as e:
st.error(f"Error initializing model: {e}")
return None, None
def preprocess_input(user_input, input_type):
"""Preprocesses the input based on the input type."""
prompt_templates = {
"recipe_suggestion": "I have the following ingredients: {}. Suggest a recipe, and the recipe must include the ingredients I provided. Provide steps",
"promotion_idea": "Suggest a promotion to increase customer engagement based on these goals/themes: {}.",
"waste_reduction_tip": "Suggest strategies, including numbered steps, to minimize food waste based on this context/these ingredients: {}.",
"event_planning": "I want to plan an event. Here's the description/goals/requirements: {}. Give detailed, step-by-step instructions and important considerations.",
}
prompt = prompt_templates.get(input_type)
if prompt:
return prompt.format(user_input)
else:
return "Invalid input type." # Should ideally never happen due to Streamlit UI controls.
def generate_suggestion(model, tokenizer, processed_input):
"""Generates text using the Gemini model."""
try:
input_ids = tokenizer(processed_input, return_tensors="pt").to(model.device) # Make sure tensors are on same device
outputs = model.generate(**input_ids, max_new_tokens=512, temperature=0.7, top_k=50, top_p=0.95, do_sample=True) # Added important params for generation quality
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return generated_text
except Exception as e:
st.error(f"Error during generation: {e}")
return "An error occurred during suggestion generation."
def postprocess_output(raw_response, input_type):
"""Postprocesses the generated text."""
# Remove any leading/trailing whitespace
cleaned_response = raw_response.strip()
# Further, specific postprocessing according to context
if input_type == 'recipe_suggestion':
try:
pass # Can add custom filtering
except:
pass
elif input_type == 'promotion_idea':
try:
pass #Can add custom regex and filters
except:
pass
elif input_type == "waste_reduction_tip" or input_type == 'event_planning':
try:
# Check to ensure instructions and steps in final output.
pass
except:
pass
# Basic example: Split into sentences for better readability (can be improved)
sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', cleaned_response)
formatted_response = "\n\n".join(sentences)
return formatted_response
def get_ai_suggestion(user_input, input_type, api_key):
model, tokenizer = initialize_gemini_api(api_key)
if model is None or tokenizer is None:
return "Failed to initialize the model. Check your API key."
processed_input = preprocess_input(user_input, input_type)
raw_response = generate_suggestion(model, tokenizer, processed_input)
formatted_response = postprocess_output(raw_response, input_type)
return formatted_response
# --- Streamlit Frontend ---
st.set_page_config(page_title="AI Restaurant Assistant", layout="wide") #Set page config
st.sidebar.title("AI Restaurant Assistant")
# --- API KEY HANDLING ---
# Use st.session_state to persist the API key *only for the session*
if 'api_key' not in st.session_state:
st.session_state.api_key = ''
# IMPORTANT SECURITY NOTE: This method is suitable for demonstration/local development.
# For a production deployment, you MUST use a more secure method of storing the API key,
# such as environment variables and NEVER hardcode it or commit it to version control.
api_key_input = st.sidebar.text_input("Enter your Hugging Face API key:", type="password", value=st.session_state.api_key)
if api_key_input:
st.session_state.api_key = api_key_input #Value is automatically cached and input bar has api_key once entered.
if not st.session_state.api_key:
st.sidebar.warning("AIzaSyBsHbB6QcwYSjZ7GeGmNuUkmnTm6a2BjmM")
st.stop() # Stop execution if no API key
# --- Input Selection ---
input_type = st.sidebar.selectbox("What kind of suggestion do you need?",
["recipe_suggestion", "promotion_idea", "waste_reduction_tip", "event_planning"])
# --- Main Area ---
st.title("Get AI-Powered Suggestions")
st.write("This tool leverages the power of the Gemini 1.5 Pro model to assist with various restaurant management tasks.") # Introduction and description
user_input = st.text_area("Enter your input here:", height=150, key="user_input") #Key is added
if st.button("Generate Suggestion"):
if user_input:
with st.spinner("Generating suggestion..."):
suggestion = get_ai_suggestion(user_input, input_type, st.session_state.api_key)
st.markdown("### AI Suggestion:", unsafe_allow_html=True) #Style output and enhance it visually.
st.write(suggestion) #Can upgrade output design by having boxes etc.
else:
st.warning("Please enter some input.")