--- library_name: transformers base_model: allenai/scibert_scivocab_uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: defect-classification-scibert-baseline results: [] --- # defect-classification-scibert-baseline This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3188 - Accuracy: 0.8752 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 512 - eval_batch_size: 512 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3307 | 1.0 | 1061 | 0.3299 | 0.8752 | | 0.331 | 2.0 | 2122 | 0.3242 | 0.8752 | | 0.3246 | 3.0 | 3183 | 0.3211 | 0.8752 | | 0.3233 | 4.0 | 4244 | 0.3194 | 0.8752 | | 0.3151 | 5.0 | 5305 | 0.3188 | 0.8752 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0