--- license: mit library_name: peft tags: - trl - sft - generated_from_trainer base_model: microsoft/Phi-3-mini-128k-instruct datasets: - scitldr model-index: - name: Summarization-Phi-3 results: [] pipeline_tag: summarization --- # Summarization-Phi-3 This model is a fine-tuned version of [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) on the scitldr dataset. It achieves the following results on the evaluation set: - Loss: 2.1554 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.0689 | 0.2510 | 500 | 2.1439 | | 2.0455 | 0.5020 | 1000 | 2.1388 | | 2.0665 | 0.7530 | 1500 | 2.1349 | | 2.0481 | 1.0040 | 2000 | 2.1308 | | 1.9051 | 1.2550 | 2500 | 2.1573 | | 1.8524 | 1.5060 | 3000 | 2.1588 | | 1.8247 | 1.7570 | 3500 | 2.1554 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.0 - Pytorch 2.2.1+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1