--- base_model: bigscience/bloom-560m datasets: - scitldr library_name: peft license: bigscience-bloom-rail-1.0 tags: - trl - sft - generated_from_trainer model-index: - name: Summarization-Bloom-560m results: [] pipeline_tag: summarization --- # Summarization-Bloom-560m This model is a fine-tuned version of [bigscience/bloom-560m](https://huggingface.co/bigscience/bloom-560m) on the scitldr dataset. It achieves the following results on the evaluation set: - Loss: 2.8578 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.8487 | 0.2510 | 500 | 2.9019 | | 2.8069 | 0.5020 | 1000 | 2.8799 | | 2.8195 | 0.7530 | 1500 | 2.8660 | | 2.8024 | 1.0040 | 2000 | 2.8556 | | 2.661 | 1.2550 | 2500 | 2.8637 | | 2.6136 | 1.5060 | 3000 | 2.8608 | | 2.5816 | 1.7570 | 3500 | 2.8578 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1