--- language: - pt tags: - generated_from_trainer datasets: - lener_br metrics: - precision - recall - f1 - accuracy model-index: - name: checkpoints results: - task: name: Token Classification type: token-classification dataset: name: lener_br type: lener_br metrics: - name: F1 type: f1 value: 0.8716487228203504 - name: Precision type: precision value: 0.8559286898839138 - name: Recall type: recall value: 0.8879569892473118 - name: Accuracy type: accuracy value: 0.9755893153732458 - name: Loss type: loss value: 0.1133928969502449 widget: - text: "EMENTA: APELAÇÃO CÍVEL - AÇÃO DE INDENIZAÇÃO POR DANOS MORAIS - PRELIMINAR - ARGUIDA PELO MINISTÉRIO PÚBLICO EM GRAU RECURSAL - NULIDADE - AUSÊNCIA DE IN- TERVENÇÃO DO PARQUET NA INSTÂNCIA A QUO - PRESENÇA DE INCAPAZ - PREJUÍZO EXISTENTE - PRELIMINAR ACOLHIDA - NULIDADE RECONHECIDA." --- ## (BERT base) NER model in the legal domain in Portuguese (LeNER-Br) **ner-bert-base-portuguese-cased-lenebr** is a NER model (token classification) in the legal domain in Portuguese that was finetuned on 16/12/2021 in Google Colab from the model [BERTimbau base](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the dataset [LeNER_br](https://huggingface.co/datasets/lener_br) by using a NER objective. Note: due to the small size of BERTimbau base and finetuning dataset, the model overfitted before to reach the end of training. Here are the overall final metrics on the validation dataset (*note: see the paragraph "Validation metrics by Named Entity" to get detailed metrics*): - **f1**: 0.8716487228203504 - **precision**: 0.8559286898839138 - **recall**: 0.8879569892473118 - **accuracy**: 0.9755893153732458 - **loss**: 0.1133928969502449 ## Widget & APP You can test this model into the widget of this page. ## Using the model for inference in production ```` # install pytorch: check https://pytorch.org/ # !pip install transformers from transformers import AutoModelForTokenClassification, AutoTokenizer import torch # parameters model_name = "ner-bert-base-portuguese-cased-lenebr" model = AutoModelForTokenClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) input_text = "EMENTA: APELAÇÃO CÍVEL - AÇÃO DE INDENIZAÇÃO POR DANOS MORAIS - PRELIMINAR - ARGUIDA PELO MINISTÉRIO PÚBLICO EM GRAU RECURSAL - NULIDADE - AUSÊNCIA DE IN- TERVENÇÃO DO PARQUET NA INSTÂNCIA A QUO - PRESENÇA DE INCAPAZ - PREJUÍZO EXISTENTE - PRELIMINAR ACOLHIDA - NULIDADE RECONHECIDA." # tokenization inputs = tokenizer(input_text, max_length=512, truncation=True, return_tensors="pt") tokens = inputs.tokens() # get predictions outputs = model(**inputs).logits predictions = torch.argmax(outputs, dim=2) # print predictions for token, prediction in zip(tokens, predictions[0].numpy()): print((token, model.config.id2label[prediction])) ```` You can use pipeline, too. However, it seems to have an issue regarding to the max_length of the input sequence. ```` !pip install transformers import transformers from transformers import pipeline model_name = "ner-bert-base-portuguese-cased-lenebr" ner = pipeline( "ner", model=model_name ) ner(input_text) ```` ## Training procedure ### Training results ```` Num examples = 7828 Num Epochs = 3 Instantaneous batch size per device = 8 Total train batch size (w. parallel, distributed & accumulation) = 8 Gradient Accumulation steps = 1 Total optimization steps = 2937 Step Training Loss Validation Loss Precision Recall F1 Accuracy 290 0.315100 0.141881 0.764542 0.709462 0.735973 0.960550 580 0.089100 0.137700 0.729155 0.810538 0.767695 0.959940 870 0.071700 0.122069 0.780277 0.872903 0.823995 0.967955 1160 0.047500 0.125950 0.800312 0.881720 0.839046 0.968367 1450 0.034900 0.129228 0.763666 0.910323 0.830570 0.969068 1740 0.036100 0.113393 0.855929 0.887957 0.871649 0.975589 2030 0.037800 0.121275 0.817230 0.889462 0.851818 0.970393 2320 0.018700 0.115745 0.836066 0.877419 0.856243 0.973136 2610 0.017100 0.118826 0.822488 0.888817 0.854367 0.973471 ```` ### Validation predictions ```` Num examples = 1177 {'JURISPRUDENCIA': {'f1': 0.6641509433962263, 'number': 657, 'precision': 0.6586826347305389, 'recall': 0.669710806697108}, 'LEGISLACAO': {'f1': 0.8489082969432314, 'number': 571, 'precision': 0.8466898954703833, 'recall': 0.851138353765324}, 'LOCAL': {'f1': 0.8066037735849058, 'number': 194, 'precision': 0.7434782608695653, 'recall': 0.8814432989690721}, 'ORGANIZACAO': {'f1': 0.8540462427745664, 'number': 1340, 'precision': 0.8277310924369747, 'recall': 0.8820895522388059}, 'PESSOA': {'f1': 0.9845722300140253, 'number': 1072, 'precision': 0.9868791002811621, 'recall': 0.9822761194029851}, 'TEMPO': {'f1': 0.9527794381350867, 'number': 816, 'precision': 0.9299883313885647, 'recall': 0.9767156862745098}, 'overall_accuracy': 0.9755893153732458, 'overall_f1': 0.8716487228203504, 'overall_precision': 0.8559286898839138, 'overall_recall': 0.8879569892473118} ````