--- language: - pt tags: - generated_from_trainer datasets: - lener_br metrics: - precision - recall - f1 - accuracy model-index: - name: checkpoints results: - task: name: Token Classification type: token-classification dataset: name: lener_br type: lener_br metrics: - name: F1 type: f1 value: 0.8926146010186757 - name: Precision type: precision value: 0.8810222036028488 - name: Recall type: recall value: 0.9045161290322581 - name: Accuracy type: accuracy value: 0.9759397808828684 - name: Loss type: loss value: 0.18803243339061737 widget: - text: "Ao Instituto Médico Legal da jurisdição do acidente ou da residência cumpre fornecer, no prazo de 90 dias, laudo à vítima (art. 5, § 5, Lei n. 6.194/74 de 19 de dezembro de 1974), função técnica que pode ser suprida por prova pericial realizada por ordem do juízo da causa, ou por prova técnica realizada no âmbito administrativo que se mostre coerente com os demais elementos de prova constante dos autos." - text: "Acrescento que não há de se falar em violação do artigo 114, § 3º, da Constituição Federal, posto que referido dispositivo revela-se impertinente, tratando da possibilidade de ajuizamento de dissídio coletivo pelo Ministério Público do Trabalho nos casos de greve em atividade essencial." - text: "Dispõe sobre o estágio de estudantes; altera a redação do art. 428 da Consolidação das Leis do Trabalho – CLT, aprovada pelo Decreto-Lei no 5.452, de 1o de maio de 1943, e a Lei no 9.394, de 20 de dezembro de 1996; revoga as Leis nos 6.494, de 7 de dezembro de 1977, e 8.859, de 23 de março de 1994, o parágrafo único do art. 82 da Lei no 9.394, de 20 de dezembro de 1996, e o art. 6o da Medida Provisória no 2.164-41, de 24 de agosto de 2001; e dá outras providências." --- ## (BERT base) NER model in the legal domain in Portuguese (LeNER-Br) **ner-bert-base-portuguese-cased-lenerbr** is a NER model (token classification) in the legal domain in Portuguese that was finetuned on 20/12/2021 in Google Colab from the model [pierreguillou/bert-base-cased-pt-lenerbr](https://huggingface.co/pierreguillou/bert-base-cased-pt-lenerbr) on the dataset [LeNER_br](https://huggingface.co/datasets/lener_br) by using a NER objective. Due to the small size of BERTimbau base and finetuning dataset, the model overfitted before to reach the end of training. Here are the overall final metrics on the validation dataset (*note: see the paragraph "Validation metrics by Named Entity" to get detailed metrics*): - **f1**: 0.8926146010186757 - **precision**: 0.8810222036028488 - **recall**: 0.9045161290322581 - **accuracy**: 0.9759397808828684 - **loss**: 0.18803243339061737 Check as well the [large version of this model](https://huggingface.co/pierreguillou/ner-bert-large-cased-pt-lenerbr) with a f1 of 0.908. **Note**: the model [pierreguillou/bert-base-cased-pt-lenerbr](https://huggingface.co/pierreguillou/bert-base-cased-pt-lenerbr) is a language model that was created through the finetuning of the model [BERTimbau base](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the dataset [LeNER-Br language modeling](https://huggingface.co/datasets/pierreguillou/lener_br_finetuning_language_model) by using a MASK objective. This first specialization of the language model before finetuning on the NER task improved a bit the model quality. To prove it, here are the results of the NER model finetuned from the model [BERTimbau base](https://huggingface.co/neuralmind/bert-base-portuguese-cased) (a non-specialized language model): - **f1**: 0.8716487228203504 - **precision**: 0.8559286898839138 - **recall**: 0.8879569892473118 - **accuracy**: 0.9755893153732458 - **loss**: 0.1133928969502449 ## Widget & App You can test this model into the widget of this page. Use as well the [NER App](https://huggingface.co/spaces/pierreguillou/ner-bert-pt-lenerbr) that allows comparing the 2 BERT models (base and large) fitted in the NER task with the legal LeNER-Br dataset. ## Using the model for inference in production ```` # install pytorch: check https://pytorch.org/ # !pip install transformers from transformers import AutoModelForTokenClassification, AutoTokenizer import torch # parameters model_name = "pierreguillou/ner-bert-base-cased-pt-lenerbr" model = AutoModelForTokenClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) input_text = "Acrescento que não há de se falar em violação do artigo 114, § 3º, da Constituição Federal, posto que referido dispositivo revela-se impertinente, tratando da possibilidade de ajuizamento de dissídio coletivo pelo Ministério Público do Trabalho nos casos de greve em atividade essencial." # tokenization inputs = tokenizer(input_text, max_length=512, truncation=True, return_tensors="pt") tokens = inputs.tokens() # get predictions outputs = model(**inputs).logits predictions = torch.argmax(outputs, dim=2) # print predictions for token, prediction in zip(tokens, predictions[0].numpy()): print((token, model.config.id2label[prediction])) ```` You can use pipeline, too. However, it seems to have an issue regarding to the max_length of the input sequence. ```` !pip install transformers import transformers from transformers import pipeline model_name = "pierreguillou/ner-bert-base-cased-pt-lenerbr" ner = pipeline( "ner", model=model_name ) ner(input_text) ```` ## Training procedure ### Notebook The notebook of finetuning ([HuggingFace_Notebook_token_classification_NER_LeNER_Br.ipynb](https://github.com/piegu/language-models/blob/master/HuggingFace_Notebook_token_classification_NER_LeNER_Br.ipynb)) is in github. ### Hyperparameters #### batch, learning rate... - per_device_batch_size = 2 - gradient_accumulation_steps = 2 - learning_rate = 2e-5 - num_train_epochs = 10 - weight_decay = 0.01 - optimizer = AdamW - betas = (0.9,0.999) - epsilon = 1e-08 - lr_scheduler_type = linear - seed = 7 #### save model & load best model - save_total_limit = 2 - logging_steps = 300 - eval_steps = logging_steps - evaluation_strategy = 'steps' - logging_strategy = 'steps' - save_strategy = 'steps' - save_steps = logging_steps - load_best_model_at_end = True - fp16 = True #### get best model through a metric - metric_for_best_model = 'eval_f1' - greater_is_better = True ### Training results ```` Num examples = 7828 Num Epochs = 10 Instantaneous batch size per device = 2 Total train batch size (w. parallel, distributed & accumulation) = 4 Gradient Accumulation steps = 2 Total optimization steps = 19570 Step Training Loss Validation Loss Precision Recall F1 Accuracy 300 0.127600 0.178613 0.722909 0.741720 0.732194 0.948802 600 0.088200 0.136965 0.733636 0.867742 0.795074 0.963079 900 0.078000 0.128858 0.791912 0.838065 0.814335 0.965243 1200 0.077800 0.126345 0.815400 0.865376 0.839645 0.967849 1500 0.074100 0.148207 0.779274 0.895914 0.833533 0.960184 1800 0.059500 0.116634 0.830829 0.868172 0.849090 0.969342 2100 0.044500 0.208459 0.887150 0.816559 0.850392 0.960535 2400 0.029400 0.136352 0.867821 0.851398 0.859531 0.970271 2700 0.025000 0.165837 0.814881 0.878495 0.845493 0.961235 3000 0.038400 0.120629 0.811719 0.893763 0.850768 0.971506 3300 0.026200 0.175094 0.823435 0.882581 0.851983 0.962957 3600 0.025600 0.178438 0.881095 0.886022 0.883551 0.963689 3900 0.041000 0.134648 0.789035 0.916129 0.847846 0.967681 4200 0.026700 0.130178 0.821275 0.903226 0.860303 0.972313 4500 0.018500 0.139294 0.844016 0.875054 0.859255 0.971140 4800 0.020800 0.197811 0.892504 0.873118 0.882705 0.965883 5100 0.019300 0.161239 0.848746 0.888172 0.868012 0.967849 5400 0.024000 0.139131 0.837507 0.913333 0.873778 0.970591 5700 0.018400 0.157223 0.899754 0.864731 0.881895 0.970210 6000 0.023500 0.137022 0.883018 0.873333 0.878149 0.973243 6300 0.009300 0.181448 0.840490 0.900860 0.869628 0.968290 6600 0.019200 0.173125 0.821316 0.896559 0.857290 0.966736 6900 0.016100 0.143160 0.789938 0.904946 0.843540 0.968245 7200 0.017000 0.145755 0.823274 0.897634 0.858848 0.969037 7500 0.012100 0.159342 0.825694 0.883226 0.853491 0.967468 7800 0.013800 0.194886 0.861237 0.859570 0.860403 0.964771 8100 0.008000 0.140271 0.829914 0.896129 0.861752 0.971567 8400 0.010300 0.143318 0.826844 0.908817 0.865895 0.973578 8700 0.015000 0.143392 0.847336 0.889247 0.867786 0.973365 9000 0.006000 0.143512 0.847795 0.905591 0.875741 0.972892 9300 0.011800 0.138747 0.827133 0.894194 0.859357 0.971673 9600 0.008500 0.159490 0.837030 0.909032 0.871546 0.970028 9900 0.010700 0.159249 0.846692 0.910968 0.877655 0.970546 10200 0.008100 0.170069 0.848288 0.900645 0.873683 0.969113 10500 0.004800 0.183795 0.860317 0.899355 0.879403 0.969570 10800 0.010700 0.157024 0.837838 0.906667 0.870894 0.971094 11100 0.003800 0.164286 0.845312 0.880215 0.862410 0.970744 11400 0.009700 0.204025 0.884294 0.887527 0.885907 0.968854 11700 0.008900 0.162819 0.829415 0.887742 0.857588 0.970530 12000 0.006400 0.164296 0.852666 0.901075 0.876202 0.971414 12300 0.007100 0.143367 0.852959 0.895699 0.873807 0.973669 12600 0.015800 0.153383 0.859224 0.900430 0.879345 0.972679 12900 0.006600 0.173447 0.869954 0.899140 0.884306 0.970927 13200 0.006800 0.163234 0.856849 0.897204 0.876563 0.971795 13500 0.003200 0.167164 0.850867 0.907957 0.878485 0.971231 13800 0.003600 0.148950 0.867801 0.910538 0.888656 0.976961 14100 0.003500 0.155691 0.847621 0.907957 0.876752 0.974127 14400 0.003300 0.157672 0.846553 0.911183 0.877680 0.974584 14700 0.002500 0.169965 0.847804 0.917634 0.881338 0.973045 15000 0.003400 0.177099 0.842199 0.912473 0.875929 0.971155 15300 0.006000 0.164151 0.848928 0.911183 0.878954 0.973258 15600 0.002400 0.174305 0.847437 0.906667 0.876052 0.971765 15900 0.004100 0.174561 0.852929 0.907957 0.879583 0.972907 16200 0.002600 0.172626 0.843263 0.907097 0.874016 0.972100 16500 0.002100 0.185302 0.841108 0.907312 0.872957 0.970485 16800 0.002900 0.175638 0.840557 0.909247 0.873554 0.971704 17100 0.001600 0.178750 0.857056 0.906452 0.881062 0.971765 17400 0.003900 0.188910 0.853619 0.907957 0.879950 0.970835 17700 0.002700 0.180822 0.864699 0.907097 0.885390 0.972283 18000 0.001300 0.179974 0.868150 0.906237 0.886785 0.973060 18300 0.000800 0.188032 0.881022 0.904516 0.892615 0.972572 18600 0.002700 0.183266 0.868601 0.901290 0.884644 0.972298 18900 0.001600 0.180301 0.862041 0.903011 0.882050 0.972344 19200 0.002300 0.183432 0.855370 0.904301 0.879155 0.971109 19500 0.001800 0.183381 0.854501 0.904301 0.878696 0.971186 ```` ### Validation metrics by Named Entity ```` Num examples = 1177 {'JURISPRUDENCIA': {'f1': 0.7016574585635359, 'number': 657, 'precision': 0.6422250316055625, 'recall': 0.7732115677321156}, 'LEGISLACAO': {'f1': 0.8839681133746677, 'number': 571, 'precision': 0.8942652329749103, 'recall': 0.8739054290718039}, 'LOCAL': {'f1': 0.8253968253968254, 'number': 194, 'precision': 0.7368421052631579, 'recall': 0.9381443298969072}, 'ORGANIZACAO': {'f1': 0.8934049079754601, 'number': 1340, 'precision': 0.918769716088328, 'recall': 0.8694029850746269}, 'PESSOA': {'f1': 0.982653539615565, 'number': 1072, 'precision': 0.9877474081055608, 'recall': 0.9776119402985075}, 'TEMPO': {'f1': 0.9657657657657657, 'number': 816, 'precision': 0.9469964664310954, 'recall': 0.9852941176470589}, 'overall_accuracy': 0.9725722644643211, 'overall_f1': 0.8926146010186757, 'overall_precision': 0.8810222036028488, 'overall_recall': 0.9045161290322581} ````