--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: lilt-xlm-roberta-base-finetuned-DocLayNet-base_paragraphs_ml512-v5 results: [] --- # lilt-xlm-roberta-base-finetuned-DocLayNet-base_paragraphs_ml512-v5 This model is a fine-tuned version of [nielsr/lilt-xlm-roberta-base](https://huggingface.co/nielsr/lilt-xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4104 - Precision: 0.8634 - Recall: 0.8634 - F1: 0.8634 - Accuracy: 0.8634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 0.05 | 100 | 0.9875 | 0.6585 | 0.6585 | 0.6585 | 0.6585 | | No log | 0.11 | 200 | 0.7886 | 0.7551 | 0.7551 | 0.7551 | 0.7551 | | No log | 0.16 | 300 | 0.5894 | 0.8248 | 0.8248 | 0.8248 | 0.8248 | | No log | 0.21 | 400 | 0.4794 | 0.8396 | 0.8396 | 0.8396 | 0.8396 | | 0.7446 | 0.27 | 500 | 0.3993 | 0.8703 | 0.8703 | 0.8703 | 0.8703 | | 0.7446 | 0.32 | 600 | 0.3631 | 0.8857 | 0.8857 | 0.8857 | 0.8857 | | 0.7446 | 0.37 | 700 | 0.4096 | 0.8630 | 0.8630 | 0.8630 | 0.8630 | | 0.7446 | 0.43 | 800 | 0.4492 | 0.8528 | 0.8528 | 0.8528 | 0.8528 | | 0.7446 | 0.48 | 900 | 0.3839 | 0.8834 | 0.8834 | 0.8834 | 0.8834 | | 0.4464 | 0.53 | 1000 | 0.4365 | 0.8498 | 0.8498 | 0.8498 | 0.8498 | | 0.4464 | 0.59 | 1100 | 0.3616 | 0.8812 | 0.8812 | 0.8812 | 0.8812 | | 0.4464 | 0.64 | 1200 | 0.3949 | 0.8796 | 0.8796 | 0.8796 | 0.8796 | | 0.4464 | 0.69 | 1300 | 0.4184 | 0.8613 | 0.8613 | 0.8613 | 0.8613 | | 0.4464 | 0.75 | 1400 | 0.4130 | 0.8743 | 0.8743 | 0.8743 | 0.8743 | | 0.3672 | 0.8 | 1500 | 0.4535 | 0.8289 | 0.8289 | 0.8289 | 0.8289 | | 0.3672 | 0.85 | 1600 | 0.3681 | 0.8713 | 0.8713 | 0.8713 | 0.8713 | | 0.3672 | 0.91 | 1700 | 0.3446 | 0.8857 | 0.8857 | 0.8857 | 0.8857 | | 0.3672 | 0.96 | 1800 | 0.4104 | 0.8634 | 0.8634 | 0.8634 | 0.8634 | ### Framework versions - Transformers 4.26.1 - Pytorch 1.13.1+cu116 - Datasets 2.9.0 - Tokenizers 0.13.2