--- library_name: transformers license: llama3.1 base_model: meta-llama/Llama-3.1-8B tags: - axolotl - generated_from_trainer datasets: - allenai/tulu-3-sft-mixture model-index: - name: II-8B-SFT results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml wandb_run_id: 2e2444b4-b741-48af-b32c-b5f44f38688f wandb_project: llm-training-platform wandb_name: II-Tulu-8B-SFT datasets: - path: allenai/tulu-3-sft-mixture split: train type: chat_template field_messages: messages message_field_role: role message_field_content: content roles: system: - system user: - user assistant: - assistant chat_template: llama3 sequence_len: 2048 base_model: meta-llama/Llama-3.1-8B output_dir: checkpoints/deb3448a-60ae-4ad8-bdc2-06cce8c43d02 dataset_prepared_path: checkpoints/deb3448a-60ae-4ad8-bdc2-06cce8c43d02/dataset_prepared flash_attention: true train_on_inputs: false pad_to_sequence_len: true eval_sample_packing: false push_to_hub: true bf16: auto logging_steps: 10 hub_model_id: phunguyen01/II-8B-SFT learning_rate: 5.0e-06 micro_batch_size: 2 num_epochs: 2 seed: 42 gradient_accumulation_steps: 2 sample_packing: true val_set_size: 0 special_tokens: pad_token: <|end_of_text|> ```

# II-8B-SFT This model is a fine-tuned version of [meta-llama/Llama-3.1-8B](https://huggingface.co/meta-llama/Llama-3.1-8B) on the allenai/tulu-3-sft-mixture dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Use adamw_hf with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 2 ### Training results ### Framework versions - Transformers 4.47.0 - Pytorch 2.4.0+cu121 - Datasets 3.1.0 - Tokenizers 0.21.0