# /home/perk/mymodel/sentencefix/tasks.py import functools import seqio import tensorflow_datasets as tfds from t5.evaluation import metrics from t5.data import preprocessors import t5 import tensorflow.compat.v1 as tf tsv_path = { "train": "gs://nb-t5x/corpus/train/train.tsv", "validation": "gs://nb-t5x/corpus/eval/eval.tsv", "test": "gs://nb-t5x/corpus/test/test.tsv" } vocabulary = t5.data.ByteVocabulary() DEFAULT_OUTPUT_FEATURES = { "inputs": seqio.Feature( vocabulary=vocabulary, add_eos=True), "targets": seqio.Feature( vocabulary=vocabulary, add_eos=True) } def sentencefix_preprocessor(ds): def normalize_text(text): """Lowercase and remove quotes from a TensorFlow string.""" text = tf.strings.regex_replace(text,"'(.*)'", r"\1") return text def to_inputs_and_targets(ex): """Map {"source": ..., "source": ...}->{"target": ..., "target": ...}.""" return { "inputs": tf.strings.join( [normalize_text(ex["source"])]), "targets": tf.strings.join( [normalize_text(ex["target"])]), } return ds.map(to_inputs_and_targets, num_parallel_calls=tf.data.experimental.AUTOTUNE) seqio.TaskRegistry.add( "sentencefix", source=seqio.TextLineDataSource( split_to_filepattern=tsv_path, #num_input_examples=num_nq_examples ), preprocessors=[ functools.partial( t5.data.preprocessors.parse_tsv, field_names=["source", "target"]), sentencefix_preprocessor, seqio.preprocessors.tokenize_and_append_eos, ], #metric_fns=[metrics.bleu], output_features=DEFAULT_OUTPUT_FEATURES, )