import torch import torch.nn as nn class AsymmetricLossMultiLabel(nn.Module): def __init__(self, gamma_neg=4, gamma_pos=1, clip=0.05, eps=1e-8, disable_torch_grad_focal_loss=False): super(AsymmetricLossMultiLabel, self).__init__() self.gamma_neg = gamma_neg self.gamma_pos = gamma_pos self.clip = clip self.disable_torch_grad_focal_loss = disable_torch_grad_focal_loss self.eps = eps def forward(self, x, y): """" Parameters ---------- x: input logits y: targets (multi-label binarized vector) """ # Calculating Probabilities x_sigmoid = torch.sigmoid(x) xs_pos = x_sigmoid xs_neg = 1 - x_sigmoid # Asymmetric Clipping if self.clip is not None and self.clip > 0: xs_neg = (xs_neg + self.clip).clamp(max=1) # Basic CE calculation los_pos = y * torch.log(xs_pos.clamp(min=self.eps)) los_neg = (1 - y) * torch.log(xs_neg.clamp(min=self.eps)) loss = los_pos + los_neg # Asymmetric Focusing if self.gamma_neg > 0 or self.gamma_pos > 0: if self.disable_torch_grad_focal_loss: torch.set_grad_enabled(False) pt0 = xs_pos * y pt1 = xs_neg * (1 - y) # pt = p if t > 0 else 1-p pt = pt0 + pt1 one_sided_gamma = self.gamma_pos * y + self.gamma_neg * (1 - y) one_sided_w = torch.pow(1 - pt, one_sided_gamma) if self.disable_torch_grad_focal_loss: torch.set_grad_enabled(True) loss *= one_sided_w return -loss.sum() class AsymmetricLossSingleLabel(nn.Module): def __init__(self, gamma_pos=1, gamma_neg=4, eps: float = 0.1, reduction='mean'): super(AsymmetricLossSingleLabel, self).__init__() self.eps = eps self.logsoftmax = nn.LogSoftmax(dim=-1) self.targets_classes = [] # prevent gpu repeated memory allocation self.gamma_pos = gamma_pos self.gamma_neg = gamma_neg self.reduction = reduction def forward(self, inputs, target, reduction=None): """" Parameters ---------- x: input logits y: targets (1-hot vector) """ num_classes = inputs.size()[-1] log_preds = self.logsoftmax(inputs) self.targets_classes = torch.zeros_like(inputs).scatter_(1, target.long().unsqueeze(1), 1) # ASL weights targets = self.targets_classes anti_targets = 1 - targets xs_pos = torch.exp(log_preds) xs_neg = 1 - xs_pos xs_pos = xs_pos * targets xs_neg = xs_neg * anti_targets asymmetric_w = torch.pow(1 - xs_pos - xs_neg, self.gamma_pos * targets + self.gamma_neg * anti_targets) log_preds = log_preds * asymmetric_w if self.eps > 0: # label smoothing self.targets_classes = self.targets_classes.mul(1 - self.eps).add(self.eps / num_classes) # loss calculation loss = - self.targets_classes.mul(log_preds) loss = loss.sum(dim=-1) if self.reduction == 'mean': loss = loss.mean() return loss