""" Polynomial Scheduler Polynomial LR schedule with warmup, noise. Hacked together by / Copyright 2021 Ross Wightman """ import math import logging from typing import List import torch from .scheduler import Scheduler _logger = logging.getLogger(__name__) class PolyLRScheduler(Scheduler): """ Polynomial LR Scheduler w/ warmup, noise, and k-decay k-decay option based on `k-decay: A New Method For Learning Rate Schedule` - https://arxiv.org/abs/2004.05909 """ def __init__( self, optimizer: torch.optim.Optimizer, t_initial: int, power: float = 0.5, lr_min: float = 0., cycle_mul: float = 1., cycle_decay: float = 1., cycle_limit: int = 1, warmup_t=0, warmup_lr_init=0, warmup_prefix=False, t_in_epochs=True, noise_range_t=None, noise_pct=0.67, noise_std=1.0, noise_seed=42, k_decay=1.0, initialize=True, ) -> None: super().__init__( optimizer, param_group_field="lr", t_in_epochs=t_in_epochs, noise_range_t=noise_range_t, noise_pct=noise_pct, noise_std=noise_std, noise_seed=noise_seed, initialize=initialize ) assert t_initial > 0 assert lr_min >= 0 if t_initial == 1 and cycle_mul == 1 and cycle_decay == 1: _logger.warning("Cosine annealing scheduler will have no effect on the learning " "rate since t_initial = t_mul = eta_mul = 1.") self.t_initial = t_initial self.power = power self.lr_min = lr_min self.cycle_mul = cycle_mul self.cycle_decay = cycle_decay self.cycle_limit = cycle_limit self.warmup_t = warmup_t self.warmup_lr_init = warmup_lr_init self.warmup_prefix = warmup_prefix self.k_decay = k_decay if self.warmup_t: self.warmup_steps = [(v - warmup_lr_init) / self.warmup_t for v in self.base_values] super().update_groups(self.warmup_lr_init) else: self.warmup_steps = [1 for _ in self.base_values] def _get_lr(self, t: int) -> List[float]: if t < self.warmup_t: lrs = [self.warmup_lr_init + t * s for s in self.warmup_steps] else: if self.warmup_prefix: t = t - self.warmup_t if self.cycle_mul != 1: i = math.floor(math.log(1 - t / self.t_initial * (1 - self.cycle_mul), self.cycle_mul)) t_i = self.cycle_mul ** i * self.t_initial t_curr = t - (1 - self.cycle_mul ** i) / (1 - self.cycle_mul) * self.t_initial else: i = t // self.t_initial t_i = self.t_initial t_curr = t - (self.t_initial * i) gamma = self.cycle_decay ** i lr_max_values = [v * gamma for v in self.base_values] k = self.k_decay if i < self.cycle_limit: lrs = [ self.lr_min + (lr_max - self.lr_min) * (1 - t_curr ** k / t_i ** k) ** self.power for lr_max in lr_max_values ] else: lrs = [self.lr_min for _ in self.base_values] return lrs def get_cycle_length(self, cycles=0): cycles = max(1, cycles or self.cycle_limit) if self.cycle_mul == 1.0: return self.t_initial * cycles else: return int(math.floor(-self.t_initial * (self.cycle_mul ** cycles - 1) / (1 - self.cycle_mul)))