""" Padding Helpers Hacked together by / Copyright 2020 Ross Wightman """ import math from typing import List, Tuple import torch import torch.nn.functional as F # Calculate symmetric padding for a convolution def get_padding(kernel_size: int, stride: int = 1, dilation: int = 1, **_) -> int: padding = ((stride - 1) + dilation * (kernel_size - 1)) // 2 return padding # Calculate asymmetric TensorFlow-like 'SAME' padding for a convolution def get_same_padding(x: int, kernel_size: int, stride: int, dilation: int): if isinstance(x, torch.Tensor): return torch.clamp(((x / stride).ceil() - 1) * stride + (kernel_size - 1) * dilation + 1 - x, min=0) else: return max((math.ceil(x / stride) - 1) * stride + (kernel_size - 1) * dilation + 1 - x, 0) # Can SAME padding for given args be done statically? def is_static_pad(kernel_size: int, stride: int = 1, dilation: int = 1, **_): return stride == 1 and (dilation * (kernel_size - 1)) % 2 == 0 def pad_same_arg( input_size: List[int], kernel_size: List[int], stride: List[int], dilation: List[int] = (1, 1), ) -> List[int]: ih, iw = input_size kh, kw = kernel_size pad_h = get_same_padding(ih, kh, stride[0], dilation[0]) pad_w = get_same_padding(iw, kw, stride[1], dilation[1]) return [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2] # Dynamically pad input x with 'SAME' padding for conv with specified args def pad_same( x, kernel_size: List[int], stride: List[int], dilation: List[int] = (1, 1), value: float = 0, ): ih, iw = x.size()[-2:] pad_h = get_same_padding(ih, kernel_size[0], stride[0], dilation[0]) pad_w = get_same_padding(iw, kernel_size[1], stride[1], dilation[1]) x = F.pad(x, (pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2), value=value) return x def get_padding_value(padding, kernel_size, **kwargs) -> Tuple[Tuple, bool]: dynamic = False if isinstance(padding, str): # for any string padding, the padding will be calculated for you, one of three ways padding = padding.lower() if padding == 'same': # TF compatible 'SAME' padding, has a performance and GPU memory allocation impact if is_static_pad(kernel_size, **kwargs): # static case, no extra overhead padding = get_padding(kernel_size, **kwargs) else: # dynamic 'SAME' padding, has runtime/GPU memory overhead padding = 0 dynamic = True elif padding == 'valid': # 'VALID' padding, same as padding=0 padding = 0 else: # Default to PyTorch style 'same'-ish symmetric padding padding = get_padding(kernel_size, **kwargs) return padding, dynamic