""" Conv2d + BN + Act Hacked together by / Copyright 2020 Ross Wightman """ import functools from torch import nn as nn from .create_conv2d import create_conv2d from .create_norm_act import get_norm_act_layer class ConvNormAct(nn.Module): def __init__( self, in_channels, out_channels, kernel_size=1, stride=1, padding='', dilation=1, groups=1, bias=False, apply_act=True, norm_layer=nn.BatchNorm2d, norm_kwargs=None, act_layer=nn.ReLU, act_kwargs=None, drop_layer=None, ): super(ConvNormAct, self).__init__() norm_kwargs = norm_kwargs or {} act_kwargs = act_kwargs or {} self.conv = create_conv2d( in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias) # NOTE for backwards compatibility with models that use separate norm and act layer definitions norm_act_layer = get_norm_act_layer(norm_layer, act_layer) # NOTE for backwards (weight) compatibility, norm layer name remains `.bn` if drop_layer: norm_kwargs['drop_layer'] = drop_layer self.bn = norm_act_layer( out_channels, apply_act=apply_act, act_kwargs=act_kwargs, **norm_kwargs, ) @property def in_channels(self): return self.conv.in_channels @property def out_channels(self): return self.conv.out_channels def forward(self, x): x = self.conv(x) x = self.bn(x) return x ConvBnAct = ConvNormAct def create_aa(aa_layer, channels, stride=2, enable=True): if not aa_layer or not enable: return nn.Identity() if isinstance(aa_layer, functools.partial): if issubclass(aa_layer.func, nn.AvgPool2d): return aa_layer() else: return aa_layer(channels) elif issubclass(aa_layer, nn.AvgPool2d): return aa_layer(stride) else: return aa_layer(channels=channels, stride=stride) class ConvNormActAa(nn.Module): def __init__( self, in_channels, out_channels, kernel_size=1, stride=1, padding='', dilation=1, groups=1, bias=False, apply_act=True, norm_layer=nn.BatchNorm2d, norm_kwargs=None, act_layer=nn.ReLU, act_kwargs=None, aa_layer=None, drop_layer=None, ): super(ConvNormActAa, self).__init__() use_aa = aa_layer is not None and stride == 2 norm_kwargs = norm_kwargs or {} act_kwargs = act_kwargs or {} self.conv = create_conv2d( in_channels, out_channels, kernel_size, stride=1 if use_aa else stride, padding=padding, dilation=dilation, groups=groups, bias=bias) # NOTE for backwards compatibility with models that use separate norm and act layer definitions norm_act_layer = get_norm_act_layer(norm_layer, act_layer) # NOTE for backwards (weight) compatibility, norm layer name remains `.bn` if drop_layer: norm_kwargs['drop_layer'] = drop_layer self.bn = norm_act_layer(out_channels, apply_act=apply_act, act_kwargs=act_kwargs, **norm_kwargs) self.aa = create_aa(aa_layer, out_channels, stride=stride, enable=use_aa) @property def in_channels(self): return self.conv.in_channels @property def out_channels(self): return self.conv.out_channels def forward(self, x): x = self.conv(x) x = self.bn(x) x = self.aa(x) return x