""" Conv2d w/ Same Padding Hacked together by / Copyright 2020 Ross Wightman """ import torch import torch.nn as nn import torch.nn.functional as F from typing import Tuple, Optional from .config import is_exportable, is_scriptable from .padding import pad_same, pad_same_arg, get_padding_value _USE_EXPORT_CONV = False def conv2d_same( x, weight: torch.Tensor, bias: Optional[torch.Tensor] = None, stride: Tuple[int, int] = (1, 1), padding: Tuple[int, int] = (0, 0), dilation: Tuple[int, int] = (1, 1), groups: int = 1, ): x = pad_same(x, weight.shape[-2:], stride, dilation) return F.conv2d(x, weight, bias, stride, (0, 0), dilation, groups) class Conv2dSame(nn.Conv2d): """ Tensorflow like 'SAME' convolution wrapper for 2D convolutions """ def __init__( self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, ): super(Conv2dSame, self).__init__( in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias, ) def forward(self, x): return conv2d_same( x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups, ) class Conv2dSameExport(nn.Conv2d): """ ONNX export friendly Tensorflow like 'SAME' convolution wrapper for 2D convolutions NOTE: This does not currently work with torch.jit.script """ # pylint: disable=unused-argument def __init__( self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, ): super(Conv2dSameExport, self).__init__( in_channels, out_channels, kernel_size, stride, 0, dilation, groups, bias, ) self.pad = None self.pad_input_size = (0, 0) def forward(self, x): input_size = x.size()[-2:] if self.pad is None: pad_arg = pad_same_arg(input_size, self.weight.size()[-2:], self.stride, self.dilation) self.pad = nn.ZeroPad2d(pad_arg) self.pad_input_size = input_size x = self.pad(x) return F.conv2d( x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups, ) def create_conv2d_pad(in_chs, out_chs, kernel_size, **kwargs): padding = kwargs.pop('padding', '') kwargs.setdefault('bias', False) padding, is_dynamic = get_padding_value(padding, kernel_size, **kwargs) if is_dynamic: if _USE_EXPORT_CONV and is_exportable(): # older PyTorch ver needed this to export same padding reasonably assert not is_scriptable() # Conv2DSameExport does not work with jit return Conv2dSameExport(in_chs, out_chs, kernel_size, **kwargs) else: return Conv2dSame(in_chs, out_chs, kernel_size, **kwargs) else: return nn.Conv2d(in_chs, out_chs, kernel_size, padding=padding, **kwargs)