"""PyTorch CspNet A PyTorch implementation of Cross Stage Partial Networks including: * CSPResNet50 * CSPResNeXt50 * CSPDarkNet53 * and DarkNet53 for good measure Based on paper `CSPNet: A New Backbone that can Enhance Learning Capability of CNN` - https://arxiv.org/abs/1911.11929 Reference impl via darknet cfg files at https://github.com/WongKinYiu/CrossStagePartialNetworks Hacked together by / Copyright 2020 Ross Wightman """ from dataclasses import dataclass, asdict, replace from functools import partial from typing import Any, Dict, Optional, Tuple, Union import torch import torch.nn as nn from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD from timm.layers import ClassifierHead, ConvNormAct, ConvNormActAa, DropPath, get_attn, create_act_layer, make_divisible from ._builder import build_model_with_cfg from ._manipulate import named_apply, MATCH_PREV_GROUP from ._registry import register_model, generate_default_cfgs __all__ = ['CspNet'] # model_registry will add each entrypoint fn to this @dataclass class CspStemCfg: out_chs: Union[int, Tuple[int, ...]] = 32 stride: Union[int, Tuple[int, ...]] = 2 kernel_size: int = 3 padding: Union[int, str] = '' pool: Optional[str] = '' def _pad_arg(x, n): # pads an argument tuple to specified n by padding with last value if not isinstance(x, (tuple, list)): x = (x,) curr_n = len(x) pad_n = n - curr_n if pad_n <= 0: return x[:n] return tuple(x + (x[-1],) * pad_n) @dataclass class CspStagesCfg: depth: Tuple[int, ...] = (3, 3, 5, 2) # block depth (number of block repeats in stages) out_chs: Tuple[int, ...] = (128, 256, 512, 1024) # number of output channels for blocks in stage stride: Union[int, Tuple[int, ...]] = 2 # stride of stage groups: Union[int, Tuple[int, ...]] = 1 # num kxk conv groups block_ratio: Union[float, Tuple[float, ...]] = 1.0 bottle_ratio: Union[float, Tuple[float, ...]] = 1. # bottleneck-ratio of blocks in stage avg_down: Union[bool, Tuple[bool, ...]] = False attn_layer: Optional[Union[str, Tuple[str, ...]]] = None attn_kwargs: Optional[Union[Dict, Tuple[Dict]]] = None stage_type: Union[str, Tuple[str]] = 'csp' # stage type ('csp', 'cs2', 'dark') block_type: Union[str, Tuple[str]] = 'bottle' # blocks type for stages ('bottle', 'dark') # cross-stage only expand_ratio: Union[float, Tuple[float, ...]] = 1.0 cross_linear: Union[bool, Tuple[bool, ...]] = False down_growth: Union[bool, Tuple[bool, ...]] = False def __post_init__(self): n = len(self.depth) assert len(self.out_chs) == n self.stride = _pad_arg(self.stride, n) self.groups = _pad_arg(self.groups, n) self.block_ratio = _pad_arg(self.block_ratio, n) self.bottle_ratio = _pad_arg(self.bottle_ratio, n) self.avg_down = _pad_arg(self.avg_down, n) self.attn_layer = _pad_arg(self.attn_layer, n) self.attn_kwargs = _pad_arg(self.attn_kwargs, n) self.stage_type = _pad_arg(self.stage_type, n) self.block_type = _pad_arg(self.block_type, n) self.expand_ratio = _pad_arg(self.expand_ratio, n) self.cross_linear = _pad_arg(self.cross_linear, n) self.down_growth = _pad_arg(self.down_growth, n) @dataclass class CspModelCfg: stem: CspStemCfg stages: CspStagesCfg zero_init_last: bool = True # zero init last weight (usually bn) in residual path act_layer: str = 'leaky_relu' norm_layer: str = 'batchnorm' aa_layer: Optional[str] = None # FIXME support string factory for this def _cs3_cfg( width_multiplier=1.0, depth_multiplier=1.0, avg_down=False, act_layer='silu', focus=False, attn_layer=None, attn_kwargs=None, bottle_ratio=1.0, block_type='dark', ): if focus: stem_cfg = CspStemCfg( out_chs=make_divisible(64 * width_multiplier), kernel_size=6, stride=2, padding=2, pool='') else: stem_cfg = CspStemCfg( out_chs=tuple([make_divisible(c * width_multiplier) for c in (32, 64)]), kernel_size=3, stride=2, pool='') return CspModelCfg( stem=stem_cfg, stages=CspStagesCfg( out_chs=tuple([make_divisible(c * width_multiplier) for c in (128, 256, 512, 1024)]), depth=tuple([int(d * depth_multiplier) for d in (3, 6, 9, 3)]), stride=2, bottle_ratio=bottle_ratio, block_ratio=0.5, avg_down=avg_down, attn_layer=attn_layer, attn_kwargs=attn_kwargs, stage_type='cs3', block_type=block_type, ), act_layer=act_layer, ) class BottleneckBlock(nn.Module): """ ResNe(X)t Bottleneck Block """ def __init__( self, in_chs, out_chs, dilation=1, bottle_ratio=0.25, groups=1, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, attn_last=False, attn_layer=None, drop_block=None, drop_path=0. ): super(BottleneckBlock, self).__init__() mid_chs = int(round(out_chs * bottle_ratio)) ckwargs = dict(act_layer=act_layer, norm_layer=norm_layer) attn_last = attn_layer is not None and attn_last attn_first = attn_layer is not None and not attn_last self.conv1 = ConvNormAct(in_chs, mid_chs, kernel_size=1, **ckwargs) self.conv2 = ConvNormAct( mid_chs, mid_chs, kernel_size=3, dilation=dilation, groups=groups, drop_layer=drop_block, **ckwargs) self.attn2 = attn_layer(mid_chs, act_layer=act_layer) if attn_first else nn.Identity() self.conv3 = ConvNormAct(mid_chs, out_chs, kernel_size=1, apply_act=False, **ckwargs) self.attn3 = attn_layer(out_chs, act_layer=act_layer) if attn_last else nn.Identity() self.drop_path = DropPath(drop_path) if drop_path else nn.Identity() self.act3 = create_act_layer(act_layer) def zero_init_last(self): nn.init.zeros_(self.conv3.bn.weight) def forward(self, x): shortcut = x x = self.conv1(x) x = self.conv2(x) x = self.attn2(x) x = self.conv3(x) x = self.attn3(x) x = self.drop_path(x) + shortcut # FIXME partial shortcut needed if first block handled as per original, not used for my current impl #x[:, :shortcut.size(1)] += shortcut x = self.act3(x) return x class DarkBlock(nn.Module): """ DarkNet Block """ def __init__( self, in_chs, out_chs, dilation=1, bottle_ratio=0.5, groups=1, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, attn_layer=None, drop_block=None, drop_path=0. ): super(DarkBlock, self).__init__() mid_chs = int(round(out_chs * bottle_ratio)) ckwargs = dict(act_layer=act_layer, norm_layer=norm_layer) self.conv1 = ConvNormAct(in_chs, mid_chs, kernel_size=1, **ckwargs) self.attn = attn_layer(mid_chs, act_layer=act_layer) if attn_layer is not None else nn.Identity() self.conv2 = ConvNormAct( mid_chs, out_chs, kernel_size=3, dilation=dilation, groups=groups, drop_layer=drop_block, **ckwargs) self.drop_path = DropPath(drop_path) if drop_path else nn.Identity() def zero_init_last(self): nn.init.zeros_(self.conv2.bn.weight) def forward(self, x): shortcut = x x = self.conv1(x) x = self.attn(x) x = self.conv2(x) x = self.drop_path(x) + shortcut return x class EdgeBlock(nn.Module): """ EdgeResidual / Fused-MBConv / MobileNetV1-like 3x3 + 1x1 block (w/ activated output) """ def __init__( self, in_chs, out_chs, dilation=1, bottle_ratio=0.5, groups=1, act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, attn_layer=None, drop_block=None, drop_path=0. ): super(EdgeBlock, self).__init__() mid_chs = int(round(out_chs * bottle_ratio)) ckwargs = dict(act_layer=act_layer, norm_layer=norm_layer) self.conv1 = ConvNormAct( in_chs, mid_chs, kernel_size=3, dilation=dilation, groups=groups, drop_layer=drop_block, **ckwargs) self.attn = attn_layer(mid_chs, act_layer=act_layer) if attn_layer is not None else nn.Identity() self.conv2 = ConvNormAct(mid_chs, out_chs, kernel_size=1, **ckwargs) self.drop_path = DropPath(drop_path) if drop_path else nn.Identity() def zero_init_last(self): nn.init.zeros_(self.conv2.bn.weight) def forward(self, x): shortcut = x x = self.conv1(x) x = self.attn(x) x = self.conv2(x) x = self.drop_path(x) + shortcut return x class CrossStage(nn.Module): """Cross Stage.""" def __init__( self, in_chs, out_chs, stride, dilation, depth, block_ratio=1., bottle_ratio=1., expand_ratio=1., groups=1, first_dilation=None, avg_down=False, down_growth=False, cross_linear=False, block_dpr=None, block_fn=BottleneckBlock, **block_kwargs, ): super(CrossStage, self).__init__() first_dilation = first_dilation or dilation down_chs = out_chs if down_growth else in_chs # grow downsample channels to output channels self.expand_chs = exp_chs = int(round(out_chs * expand_ratio)) block_out_chs = int(round(out_chs * block_ratio)) conv_kwargs = dict(act_layer=block_kwargs.get('act_layer'), norm_layer=block_kwargs.get('norm_layer')) aa_layer = block_kwargs.pop('aa_layer', None) if stride != 1 or first_dilation != dilation: if avg_down: self.conv_down = nn.Sequential( nn.AvgPool2d(2) if stride == 2 else nn.Identity(), # FIXME dilation handling ConvNormActAa(in_chs, out_chs, kernel_size=1, stride=1, groups=groups, **conv_kwargs) ) else: self.conv_down = ConvNormActAa( in_chs, down_chs, kernel_size=3, stride=stride, dilation=first_dilation, groups=groups, aa_layer=aa_layer, **conv_kwargs) prev_chs = down_chs else: self.conv_down = nn.Identity() prev_chs = in_chs # FIXME this 1x1 expansion is pushed down into the cross and block paths in the darknet cfgs. Also, # there is also special case for the first stage for some of the model that results in uneven split # across the two paths. I did it this way for simplicity for now. self.conv_exp = ConvNormAct(prev_chs, exp_chs, kernel_size=1, apply_act=not cross_linear, **conv_kwargs) prev_chs = exp_chs // 2 # output of conv_exp is always split in two self.blocks = nn.Sequential() for i in range(depth): self.blocks.add_module(str(i), block_fn( in_chs=prev_chs, out_chs=block_out_chs, dilation=dilation, bottle_ratio=bottle_ratio, groups=groups, drop_path=block_dpr[i] if block_dpr is not None else 0., **block_kwargs, )) prev_chs = block_out_chs # transition convs self.conv_transition_b = ConvNormAct(prev_chs, exp_chs // 2, kernel_size=1, **conv_kwargs) self.conv_transition = ConvNormAct(exp_chs, out_chs, kernel_size=1, **conv_kwargs) def forward(self, x): x = self.conv_down(x) x = self.conv_exp(x) xs, xb = x.split(self.expand_chs // 2, dim=1) xb = self.blocks(xb) xb = self.conv_transition_b(xb).contiguous() out = self.conv_transition(torch.cat([xs, xb], dim=1)) return out class CrossStage3(nn.Module): """Cross Stage 3. Similar to CrossStage, but with only one transition conv for the output. """ def __init__( self, in_chs, out_chs, stride, dilation, depth, block_ratio=1., bottle_ratio=1., expand_ratio=1., groups=1, first_dilation=None, avg_down=False, down_growth=False, cross_linear=False, block_dpr=None, block_fn=BottleneckBlock, **block_kwargs, ): super(CrossStage3, self).__init__() first_dilation = first_dilation or dilation down_chs = out_chs if down_growth else in_chs # grow downsample channels to output channels self.expand_chs = exp_chs = int(round(out_chs * expand_ratio)) block_out_chs = int(round(out_chs * block_ratio)) conv_kwargs = dict(act_layer=block_kwargs.get('act_layer'), norm_layer=block_kwargs.get('norm_layer')) aa_layer = block_kwargs.pop('aa_layer', None) if stride != 1 or first_dilation != dilation: if avg_down: self.conv_down = nn.Sequential( nn.AvgPool2d(2) if stride == 2 else nn.Identity(), # FIXME dilation handling ConvNormActAa(in_chs, out_chs, kernel_size=1, stride=1, groups=groups, **conv_kwargs) ) else: self.conv_down = ConvNormActAa( in_chs, down_chs, kernel_size=3, stride=stride, dilation=first_dilation, groups=groups, aa_layer=aa_layer, **conv_kwargs) prev_chs = down_chs else: self.conv_down = None prev_chs = in_chs # expansion conv self.conv_exp = ConvNormAct(prev_chs, exp_chs, kernel_size=1, apply_act=not cross_linear, **conv_kwargs) prev_chs = exp_chs // 2 # expanded output is split in 2 for blocks and cross stage self.blocks = nn.Sequential() for i in range(depth): self.blocks.add_module(str(i), block_fn( in_chs=prev_chs, out_chs=block_out_chs, dilation=dilation, bottle_ratio=bottle_ratio, groups=groups, drop_path=block_dpr[i] if block_dpr is not None else 0., **block_kwargs, )) prev_chs = block_out_chs # transition convs self.conv_transition = ConvNormAct(exp_chs, out_chs, kernel_size=1, **conv_kwargs) def forward(self, x): x = self.conv_down(x) x = self.conv_exp(x) x1, x2 = x.split(self.expand_chs // 2, dim=1) x1 = self.blocks(x1) out = self.conv_transition(torch.cat([x1, x2], dim=1)) return out class DarkStage(nn.Module): """DarkNet stage.""" def __init__( self, in_chs, out_chs, stride, dilation, depth, block_ratio=1., bottle_ratio=1., groups=1, first_dilation=None, avg_down=False, block_fn=BottleneckBlock, block_dpr=None, **block_kwargs, ): super(DarkStage, self).__init__() first_dilation = first_dilation or dilation conv_kwargs = dict(act_layer=block_kwargs.get('act_layer'), norm_layer=block_kwargs.get('norm_layer')) aa_layer = block_kwargs.pop('aa_layer', None) if avg_down: self.conv_down = nn.Sequential( nn.AvgPool2d(2) if stride == 2 else nn.Identity(), # FIXME dilation handling ConvNormActAa(in_chs, out_chs, kernel_size=1, stride=1, groups=groups, **conv_kwargs) ) else: self.conv_down = ConvNormActAa( in_chs, out_chs, kernel_size=3, stride=stride, dilation=first_dilation, groups=groups, aa_layer=aa_layer, **conv_kwargs) prev_chs = out_chs block_out_chs = int(round(out_chs * block_ratio)) self.blocks = nn.Sequential() for i in range(depth): self.blocks.add_module(str(i), block_fn( in_chs=prev_chs, out_chs=block_out_chs, dilation=dilation, bottle_ratio=bottle_ratio, groups=groups, drop_path=block_dpr[i] if block_dpr is not None else 0., **block_kwargs )) prev_chs = block_out_chs def forward(self, x): x = self.conv_down(x) x = self.blocks(x) return x def create_csp_stem( in_chans=3, out_chs=32, kernel_size=3, stride=2, pool='', padding='', act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, aa_layer=None, ): stem = nn.Sequential() feature_info = [] if not isinstance(out_chs, (tuple, list)): out_chs = [out_chs] stem_depth = len(out_chs) assert stem_depth assert stride in (1, 2, 4) prev_feat = None prev_chs = in_chans last_idx = stem_depth - 1 stem_stride = 1 for i, chs in enumerate(out_chs): conv_name = f'conv{i + 1}' conv_stride = 2 if (i == 0 and stride > 1) or (i == last_idx and stride > 2 and not pool) else 1 if conv_stride > 1 and prev_feat is not None: feature_info.append(prev_feat) stem.add_module(conv_name, ConvNormAct( prev_chs, chs, kernel_size, stride=conv_stride, padding=padding if i == 0 else '', act_layer=act_layer, norm_layer=norm_layer, )) stem_stride *= conv_stride prev_chs = chs prev_feat = dict(num_chs=prev_chs, reduction=stem_stride, module='.'.join(['stem', conv_name])) if pool: assert stride > 2 if prev_feat is not None: feature_info.append(prev_feat) if aa_layer is not None: stem.add_module('pool', nn.MaxPool2d(kernel_size=3, stride=1, padding=1)) stem.add_module('aa', aa_layer(channels=prev_chs, stride=2)) pool_name = 'aa' else: stem.add_module('pool', nn.MaxPool2d(kernel_size=3, stride=2, padding=1)) pool_name = 'pool' stem_stride *= 2 prev_feat = dict(num_chs=prev_chs, reduction=stem_stride, module='.'.join(['stem', pool_name])) feature_info.append(prev_feat) return stem, feature_info def _get_stage_fn(stage_args): stage_type = stage_args.pop('stage_type') assert stage_type in ('dark', 'csp', 'cs3') if stage_type == 'dark': stage_args.pop('expand_ratio', None) stage_args.pop('cross_linear', None) stage_args.pop('down_growth', None) stage_fn = DarkStage elif stage_type == 'csp': stage_fn = CrossStage else: stage_fn = CrossStage3 return stage_fn, stage_args def _get_block_fn(stage_args): block_type = stage_args.pop('block_type') assert block_type in ('dark', 'edge', 'bottle') if block_type == 'dark': return DarkBlock, stage_args elif block_type == 'edge': return EdgeBlock, stage_args else: return BottleneckBlock, stage_args def _get_attn_fn(stage_args): attn_layer = stage_args.pop('attn_layer') attn_kwargs = stage_args.pop('attn_kwargs', None) or {} if attn_layer is not None: attn_layer = get_attn(attn_layer) if attn_kwargs: attn_layer = partial(attn_layer, **attn_kwargs) return attn_layer, stage_args def create_csp_stages( cfg: CspModelCfg, drop_path_rate: float, output_stride: int, stem_feat: Dict[str, Any], ): cfg_dict = asdict(cfg.stages) num_stages = len(cfg.stages.depth) cfg_dict['block_dpr'] = [None] * num_stages if not drop_path_rate else \ [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(cfg.stages.depth)).split(cfg.stages.depth)] stage_args = [dict(zip(cfg_dict.keys(), values)) for values in zip(*cfg_dict.values())] block_kwargs = dict( act_layer=cfg.act_layer, norm_layer=cfg.norm_layer, ) dilation = 1 net_stride = stem_feat['reduction'] prev_chs = stem_feat['num_chs'] prev_feat = stem_feat feature_info = [] stages = [] for stage_idx, stage_args in enumerate(stage_args): stage_fn, stage_args = _get_stage_fn(stage_args) block_fn, stage_args = _get_block_fn(stage_args) attn_fn, stage_args = _get_attn_fn(stage_args) stride = stage_args.pop('stride') if stride != 1 and prev_feat: feature_info.append(prev_feat) if net_stride >= output_stride and stride > 1: dilation *= stride stride = 1 net_stride *= stride first_dilation = 1 if dilation in (1, 2) else 2 stages += [stage_fn( prev_chs, **stage_args, stride=stride, first_dilation=first_dilation, dilation=dilation, block_fn=block_fn, aa_layer=cfg.aa_layer, attn_layer=attn_fn, # will be passed through stage as block_kwargs **block_kwargs, )] prev_chs = stage_args['out_chs'] prev_feat = dict(num_chs=prev_chs, reduction=net_stride, module=f'stages.{stage_idx}') feature_info.append(prev_feat) return nn.Sequential(*stages), feature_info class CspNet(nn.Module): """Cross Stage Partial base model. Paper: `CSPNet: A New Backbone that can Enhance Learning Capability of CNN` - https://arxiv.org/abs/1911.11929 Ref Impl: https://github.com/WongKinYiu/CrossStagePartialNetworks NOTE: There are differences in the way I handle the 1x1 'expansion' conv in this impl vs the darknet impl. I did it this way for simplicity and less special cases. """ def __init__( self, cfg: CspModelCfg, in_chans=3, num_classes=1000, output_stride=32, global_pool='avg', drop_rate=0., drop_path_rate=0., zero_init_last=True, **kwargs, ): """ Args: cfg (CspModelCfg): Model architecture configuration in_chans (int): Number of input channels (default: 3) num_classes (int): Number of classifier classes (default: 1000) output_stride (int): Output stride of network, one of (8, 16, 32) (default: 32) global_pool (str): Global pooling type (default: 'avg') drop_rate (float): Dropout rate (default: 0.) drop_path_rate (float): Stochastic depth drop-path rate (default: 0.) zero_init_last (bool): Zero-init last weight of residual path kwargs (dict): Extra kwargs overlayed onto cfg """ super().__init__() self.num_classes = num_classes self.drop_rate = drop_rate assert output_stride in (8, 16, 32) cfg = replace(cfg, **kwargs) # overlay kwargs onto cfg layer_args = dict( act_layer=cfg.act_layer, norm_layer=cfg.norm_layer, aa_layer=cfg.aa_layer ) self.feature_info = [] # Construct the stem self.stem, stem_feat_info = create_csp_stem(in_chans, **asdict(cfg.stem), **layer_args) self.feature_info.extend(stem_feat_info[:-1]) # Construct the stages self.stages, stage_feat_info = create_csp_stages( cfg, drop_path_rate=drop_path_rate, output_stride=output_stride, stem_feat=stem_feat_info[-1], ) prev_chs = stage_feat_info[-1]['num_chs'] self.feature_info.extend(stage_feat_info) # Construct the head self.num_features = prev_chs self.head = ClassifierHead( in_features=prev_chs, num_classes=num_classes, pool_type=global_pool, drop_rate=drop_rate) named_apply(partial(_init_weights, zero_init_last=zero_init_last), self) @torch.jit.ignore def group_matcher(self, coarse=False): matcher = dict( stem=r'^stem', blocks=r'^stages\.(\d+)' if coarse else [ (r'^stages\.(\d+)\.blocks\.(\d+)', None), (r'^stages\.(\d+)\..*transition', MATCH_PREV_GROUP), # map to last block in stage (r'^stages\.(\d+)', (0,)), ] ) return matcher @torch.jit.ignore def set_grad_checkpointing(self, enable=True): assert not enable, 'gradient checkpointing not supported' @torch.jit.ignore def get_classifier(self): return self.head.fc def reset_classifier(self, num_classes, global_pool='avg'): self.head = ClassifierHead(self.num_features, num_classes, pool_type=global_pool, drop_rate=self.drop_rate) def forward_features(self, x): x = self.stem(x) x = self.stages(x) return x def forward_head(self, x, pre_logits: bool = False): return self.head(x, pre_logits=pre_logits) if pre_logits else self.head(x) def forward(self, x): x = self.forward_features(x) x = self.forward_head(x) return x def _init_weights(module, name, zero_init_last=False): if isinstance(module, nn.Conv2d): nn.init.kaiming_normal_(module.weight, mode='fan_out', nonlinearity='relu') if module.bias is not None: nn.init.zeros_(module.bias) elif isinstance(module, nn.Linear): nn.init.normal_(module.weight, mean=0.0, std=0.01) if module.bias is not None: nn.init.zeros_(module.bias) elif zero_init_last and hasattr(module, 'zero_init_last'): module.zero_init_last() model_cfgs = dict( cspresnet50=CspModelCfg( stem=CspStemCfg(out_chs=64, kernel_size=7, stride=4, pool='max'), stages=CspStagesCfg( depth=(3, 3, 5, 2), out_chs=(128, 256, 512, 1024), stride=(1, 2), expand_ratio=2., bottle_ratio=0.5, cross_linear=True, ), ), cspresnet50d=CspModelCfg( stem=CspStemCfg(out_chs=(32, 32, 64), kernel_size=3, stride=4, pool='max'), stages=CspStagesCfg( depth=(3, 3, 5, 2), out_chs=(128, 256, 512, 1024), stride=(1,) + (2,), expand_ratio=2., bottle_ratio=0.5, block_ratio=1., cross_linear=True, ), ), cspresnet50w=CspModelCfg( stem=CspStemCfg(out_chs=(32, 32, 64), kernel_size=3, stride=4, pool='max'), stages=CspStagesCfg( depth=(3, 3, 5, 2), out_chs=(256, 512, 1024, 2048), stride=(1,) + (2,), expand_ratio=1., bottle_ratio=0.25, block_ratio=0.5, cross_linear=True, ), ), cspresnext50=CspModelCfg( stem=CspStemCfg(out_chs=64, kernel_size=7, stride=4, pool='max'), stages=CspStagesCfg( depth=(3, 3, 5, 2), out_chs=(256, 512, 1024, 2048), stride=(1,) + (2,), groups=32, expand_ratio=1., bottle_ratio=1., block_ratio=0.5, cross_linear=True, ), ), cspdarknet53=CspModelCfg( stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''), stages=CspStagesCfg( depth=(1, 2, 8, 8, 4), out_chs=(64, 128, 256, 512, 1024), stride=2, expand_ratio=(2.,) + (1.,), bottle_ratio=(0.5,) + (1.,), block_ratio=(1.,) + (0.5,), down_growth=True, block_type='dark', ), ), darknet17=CspModelCfg( stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''), stages=CspStagesCfg( depth=(1,) * 5, out_chs=(64, 128, 256, 512, 1024), stride=(2,), bottle_ratio=(0.5,), block_ratio=(1.,), stage_type='dark', block_type='dark', ), ), darknet21=CspModelCfg( stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''), stages=CspStagesCfg( depth=(1, 1, 1, 2, 2), out_chs=(64, 128, 256, 512, 1024), stride=(2,), bottle_ratio=(0.5,), block_ratio=(1.,), stage_type='dark', block_type='dark', ), ), sedarknet21=CspModelCfg( stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''), stages=CspStagesCfg( depth=(1, 1, 1, 2, 2), out_chs=(64, 128, 256, 512, 1024), stride=2, bottle_ratio=0.5, block_ratio=1., attn_layer='se', stage_type='dark', block_type='dark', ), ), darknet53=CspModelCfg( stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''), stages=CspStagesCfg( depth=(1, 2, 8, 8, 4), out_chs=(64, 128, 256, 512, 1024), stride=2, bottle_ratio=0.5, block_ratio=1., stage_type='dark', block_type='dark', ), ), darknetaa53=CspModelCfg( stem=CspStemCfg(out_chs=32, kernel_size=3, stride=1, pool=''), stages=CspStagesCfg( depth=(1, 2, 8, 8, 4), out_chs=(64, 128, 256, 512, 1024), stride=2, bottle_ratio=0.5, block_ratio=1., avg_down=True, stage_type='dark', block_type='dark', ), ), cs3darknet_s=_cs3_cfg(width_multiplier=0.5, depth_multiplier=0.5), cs3darknet_m=_cs3_cfg(width_multiplier=0.75, depth_multiplier=0.67), cs3darknet_l=_cs3_cfg(), cs3darknet_x=_cs3_cfg(width_multiplier=1.25, depth_multiplier=1.33), cs3darknet_focus_s=_cs3_cfg(width_multiplier=0.5, depth_multiplier=0.5, focus=True), cs3darknet_focus_m=_cs3_cfg(width_multiplier=0.75, depth_multiplier=0.67, focus=True), cs3darknet_focus_l=_cs3_cfg(focus=True), cs3darknet_focus_x=_cs3_cfg(width_multiplier=1.25, depth_multiplier=1.33, focus=True), cs3sedarknet_l=_cs3_cfg(attn_layer='se', attn_kwargs=dict(rd_ratio=.25)), cs3sedarknet_x=_cs3_cfg(attn_layer='se', width_multiplier=1.25, depth_multiplier=1.33), cs3sedarknet_xdw=CspModelCfg( stem=CspStemCfg(out_chs=(32, 64), kernel_size=3, stride=2, pool=''), stages=CspStagesCfg( depth=(3, 6, 12, 4), out_chs=(256, 512, 1024, 2048), stride=2, groups=(1, 1, 256, 512), bottle_ratio=0.5, block_ratio=0.5, attn_layer='se', ), act_layer='silu', ), cs3edgenet_x=_cs3_cfg(width_multiplier=1.25, depth_multiplier=1.33, bottle_ratio=1.5, block_type='edge'), cs3se_edgenet_x=_cs3_cfg( width_multiplier=1.25, depth_multiplier=1.33, bottle_ratio=1.5, block_type='edge', attn_layer='se', attn_kwargs=dict(rd_ratio=.25)), ) def _create_cspnet(variant, pretrained=False, **kwargs): if variant.startswith('darknet') or variant.startswith('cspdarknet'): # NOTE: DarkNet is one of few models with stride==1 features w/ 6 out_indices [0..5] default_out_indices = (0, 1, 2, 3, 4, 5) else: default_out_indices = (0, 1, 2, 3, 4) out_indices = kwargs.pop('out_indices', default_out_indices) return build_model_with_cfg( CspNet, variant, pretrained, model_cfg=model_cfgs[variant], feature_cfg=dict(flatten_sequential=True, out_indices=out_indices), **kwargs) def _cfg(url='', **kwargs): return { 'url': url, 'num_classes': 1000, 'input_size': (3, 256, 256), 'pool_size': (8, 8), 'crop_pct': 0.887, 'interpolation': 'bilinear', 'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD, 'first_conv': 'stem.conv1.conv', 'classifier': 'head.fc', **kwargs } default_cfgs = generate_default_cfgs({ 'cspresnet50.ra_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspresnet50_ra-d3e8d487.pth'), 'cspresnet50d.untrained': _cfg(), 'cspresnet50w.untrained': _cfg(), 'cspresnext50.ra_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspresnext50_ra_224-648b4713.pth', ), 'cspdarknet53.ra_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-weights/cspdarknet53_ra_256-d05c7c21.pth'), 'darknet17.untrained': _cfg(), 'darknet21.untrained': _cfg(), 'sedarknet21.untrained': _cfg(), 'darknet53.c2ns_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/darknet53_256_c2ns-3aeff817.pth', interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'darknetaa53.c2ns_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/darknetaa53_c2ns-5c28ec8a.pth', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'cs3darknet_s.untrained': _cfg(interpolation='bicubic'), 'cs3darknet_m.c2ns_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3darknet_m_c2ns-43f06604.pth', interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=0.95, ), 'cs3darknet_l.c2ns_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3darknet_l_c2ns-16220c5d.pth', interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=0.95), 'cs3darknet_x.c2ns_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3darknet_x_c2ns-4e4490aa.pth', interpolation='bicubic', crop_pct=0.95, test_input_size=(3, 288, 288), test_crop_pct=1.0), 'cs3darknet_focus_s.untrained': _cfg(interpolation='bicubic'), 'cs3darknet_focus_m.c2ns_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3darknet_focus_m_c2ns-e23bed41.pth', interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=0.95), 'cs3darknet_focus_l.c2ns_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3darknet_focus_l_c2ns-65ef8888.pth', interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=0.95), 'cs3darknet_focus_x.untrained': _cfg(interpolation='bicubic'), 'cs3sedarknet_l.c2ns_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3sedarknet_l_c2ns-e8d1dc13.pth', interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=0.95), 'cs3sedarknet_x.c2ns_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3sedarknet_x_c2ns-b4d0abc0.pth', interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'cs3sedarknet_xdw.untrained': _cfg(interpolation='bicubic'), 'cs3edgenet_x.c2_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3edgenet_x_c2-2e1610a9.pth', interpolation='bicubic', test_input_size=(3, 288, 288), test_crop_pct=1.0), 'cs3se_edgenet_x.c2ns_in1k': _cfg( hf_hub_id='timm/', url='https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-tpu-weights/cs3se_edgenet_x_c2ns-76f8e3ac.pth', interpolation='bicubic', crop_pct=0.95, test_input_size=(3, 320, 320), test_crop_pct=1.0), }) @register_model def cspresnet50(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('cspresnet50', pretrained=pretrained, **kwargs) @register_model def cspresnet50d(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('cspresnet50d', pretrained=pretrained, **kwargs) @register_model def cspresnet50w(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('cspresnet50w', pretrained=pretrained, **kwargs) @register_model def cspresnext50(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('cspresnext50', pretrained=pretrained, **kwargs) @register_model def cspdarknet53(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('cspdarknet53', pretrained=pretrained, **kwargs) @register_model def darknet17(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('darknet17', pretrained=pretrained, **kwargs) @register_model def darknet21(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('darknet21', pretrained=pretrained, **kwargs) @register_model def sedarknet21(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('sedarknet21', pretrained=pretrained, **kwargs) @register_model def darknet53(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('darknet53', pretrained=pretrained, **kwargs) @register_model def darknetaa53(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('darknetaa53', pretrained=pretrained, **kwargs) @register_model def cs3darknet_s(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('cs3darknet_s', pretrained=pretrained, **kwargs) @register_model def cs3darknet_m(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('cs3darknet_m', pretrained=pretrained, **kwargs) @register_model def cs3darknet_l(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('cs3darknet_l', pretrained=pretrained, **kwargs) @register_model def cs3darknet_x(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('cs3darknet_x', pretrained=pretrained, **kwargs) @register_model def cs3darknet_focus_s(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('cs3darknet_focus_s', pretrained=pretrained, **kwargs) @register_model def cs3darknet_focus_m(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('cs3darknet_focus_m', pretrained=pretrained, **kwargs) @register_model def cs3darknet_focus_l(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('cs3darknet_focus_l', pretrained=pretrained, **kwargs) @register_model def cs3darknet_focus_x(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('cs3darknet_focus_x', pretrained=pretrained, **kwargs) @register_model def cs3sedarknet_l(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('cs3sedarknet_l', pretrained=pretrained, **kwargs) @register_model def cs3sedarknet_x(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('cs3sedarknet_x', pretrained=pretrained, **kwargs) @register_model def cs3sedarknet_xdw(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('cs3sedarknet_xdw', pretrained=pretrained, **kwargs) @register_model def cs3edgenet_x(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('cs3edgenet_x', pretrained=pretrained, **kwargs) @register_model def cs3se_edgenet_x(pretrained=False, **kwargs) -> CspNet: return _create_cspnet('cs3se_edgenet_x', pretrained=pretrained, **kwargs)